LOW-QUALITY FLAX STRAW BIOMASS HARVESTING FOR SUBSEQUENT USE AS FUEL: A REVIEW

  • I. Dudarev Lutsk National Technical University, Lutsk, Ukraine
  • A. Khomych Liubeshiv Technical College, Liubeshiv, Ukraine
Keywords: flax harvesting, flax biomass, flax straw bale, flax straw burning, solid fuel

Abstract

Unfavorable conditions for flax growing, harvesting and dew-retting are the reason for the low-quality flax biomass production. This biomass cannot be processed for fiber or other purposes. Therefore, flax straws are burned in the fields or are used as fertilizer by plowing into the soil, which are not good solutions for the environment and subsequent cultivation operations. The limit values of quality properties of fibre flax stem, flax straw and retted straw for their processing are summarized, which can be used to determine the suitability of flax straw biomass for processing or burning. Low-quality flax biomass is inexpensive, ecofriendly and renewable, it can be used as solid fuel for heating greenhouses or buildings located near the field where the flax is grown. Various techniques of fibre flax and oilseed flax harvesting are presented in the article. The technique of low-quality flax harvesting is recommended, which include flax pulling out or flax cutting, flax threshing, flax straw windrow forming, flax straw natural drying on the field in natural way, flax bale forming, flax bale transporting, flax bale burning. This harvesting technology can be used for low-quality fibre flax and oilseed flax. Flax straw biomass can be baled into three bale types: small rectangular bales, big round bales, and big square bales The main requirements for fuel flax biomass bales are recommended. The boiler for burning flax straw bales must be chosen taking into account the shape and size of the bales. For the efficient operation of boilers, it is necessary to take into account the recommended values ​​of bale bulk density and moisture content of flax biomass.

References

Afzalinia, S. (2005). Modeling and validation of the baling process in the compression chamber of a large square baler [Thesis of the Degree of Doctor of philosophy]. University of Saskatchewan, Saskatoon, Canada.

Anthony, W. S. (2005). Development of machines to separate fiber and shive from seed flax straw. Applied Engineering in Agriculture, 21(6), 1057-1063. https://doi.org/10.13031/2013.20022

Asokan, M. A., Prabu, S. S., Prathiba, S., Akhil, V. S., Abishai, L. D., & Surejlal, M. E. (2021). Emission and performance behaviour of flax seed oil biodiesel/diesel blends in DI diesel engine. Materials Today: Proceedings, 46, 8148-8152. https://doi.org/10.1016/j.matpr.2021.03.108

Bar, M., Grégoire, M., Khan, S. U., De Luycker, E., & Ouagne, P. (2022). Studies on classically harvested linseed flax fibers for bio-composite reinforcement and textile applications. Journal of Natural Fibers. (in press). https://doi.org/10.1080/15440478.2021.2024934

Bourmaud, A., Gibaud, M., & Baley, C. (2016). Impact of the seeding rate on flax stem stability and the mechanical properties of elementary fibres. Industrial Crops and Products, 80, 17-25. https://doi.org/10.1016/j.indcrop.2015.10.053

Casa, R., Russell, G., Lo Cascio, B., & Rossini, F. (1999). Environmental effects on linseed (Linum usitatissimum L.) yield and growth of flax at different stand densities. European Journal of Agronomy, 11(3-4), 267-278. https://doi.org/10.1016/s1161-0301(99)00037-4

Chakraborty, S., Aggarwal, V., Mukherjee, D., & Andras, K. (2012). Biomass to biofuel: a review on production technology. Asia-Pacific Journal of Chemical Engineering, 7, S254-S262. https://doi.org/10.1002/apj.1642

Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech, 3, 415-431. https://doi.org/10.1007/s13205-013-0167-8

Chen, S., Zhao, Y., Tang, Z., Ding, H., Su, Z., & Ding, Z. (2022). Structural model of straw briquetting machine with vertical ring die and optimization of briquetting performance. Agriculture, 12, 736. https://doi.org/10.3390/agriculture12050736

Chen, Y., Tessier, S., Cavers, C., Xu, X., & Monero, F. (2005). A survey of crop residue burning practices in Manitoba. Applied Engineering in Agriculture, 21(3), 317-323. https://doi.org/10.13031/2013.18446

Dedovic, N., Igic, S., Janic, T., Matic-Kekic, S., Ponjican, O., Tomic, M., & Savin, L. (2012). Efficiency of small scale manually fed boilers – mathematical models. Energies, 5(5), 1470-1489. https://doi.org/10.3390/en5051470

Demura, T., & Ye, Z.-H. (2010). Regulation of plant biomass production. Current Opinion in Plant Biology, 13(3), 298-303. http://doi.org/10.1016/j.pbi.2010.03.002

Descôteaux, S., & Savoie, P. (2003). Development and evaluation of a dryer for big square hay bales. In CSAE/SCGR 2003 Meeting (pp. 03-212). Montréal, Québec, Canada.

Dmitrevskaya, I. I., Stepanova, D. S., Belopukhov, S. L., & Mazirov, M. A. (2016). Yield of fiber flax in long-term field experiment. Zemledelie, 7, 42-44. (in Russian)

Dudarev, I. (2020). A review of fibre flax harvesting: conditions, technologies, processes and machines. Journal of Natural Fibers (in press). http://doi.org/10.1080/15440478.2020.1863296

Flax straw and fibre past and present uses. Chapter 12. (n.d.). In J. C. P. Dribnenki (ed.), 5th ed., Growing Flax. Production, Management & Diagnostic Guide. Flax Counsil of Canada (pp. 54-61), Winnipeg Manitoba, Canada.

Gibaud, M., Bourmaud, A., & Baley, C. (2015). Understanding the lodging stability of green flax stems; The importance of morphology and fibre stiffness. Biosystems Engineering, 137, 9-21. http://doi.org/10.1016/j.biosystemseng.2015.06.005

Gomez, L. D., Steele-King, C. G., & McQueen-Mason, S. J. (2008). Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytologist, 178, 473-485. https://doi.org/10.1111/j.1469-8137.2008.02422.x

González-García, S., Luo, L., Moreira, M. T., Feijoo, G., & Huppes, G. (2009). Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain. Renewable and Sustainable Energy Reviews, 13(8), 1922-1933. http://doi.org/10.1016/j.rser.2009.02.003

GOST 24383-89. (1990). Retted stalks. Requirements for State Purchases (ГОСТ 28285-89. (1990). Треста льняная. Требования при заготовках. Издательство стандартов). (in Russian)

GOST 28285-89. (1990). Flax straw. Requirements for State Purchases (ГОСТ 28285-89. (1990). Солома льняная. Требования при заготовках. Издательство стандартов). (in Russian)

Goudenhooft, C., Alméras, T., Bourmaud, A., & Baley, C. (2019). The remarkable slenderness of flax plant and pertinent factors affecting its mechanical stability. Biosystems Engineering, 178, 1-8. https://doi.org/10.1016/j.biosystemseng.2018

Grégoire, M., Bar, M., De Luycker, E., Musio, S., Amaducci, S., Gabrion, X., Placet, V., & Ouagne, P. (2021). Comparing flax and hemp fibres yield and mechanical properties after scutching/hackling processing. Industrial Crops and Products, 172, 114045. https://doi.org/10.1016/j.indcrop.2021.114045

Guerrieri, A. S., Anifantis, A. S., Santoro, F., & Pascuzzi, S. (2019). Study of a large square baler with innovative technological systems that optimize the baling effectiveness. Agriculture, 9(5), 86. https://doi.org/10.3390/agriculture9050086

Harry, I., Ibrahim, H., Thring, R., & Idem, R. (2014). Catalytic subcritical water liquefaction of flax straw for high yield of furfural. Biomass and Bioenergy, 71, 381-393. https://doi.org/10.1016/j.biombioe.2014.09.017

Heard, J., Cavers, C., & Adrian, G. (2006). Up in smoke – nutrient loss with straw burning. Better Crops, 90, 10-11.

Heller, K., Sheng, Q. C., Guan, F., Alexopoulou, E., Hua, L. S., Wu, G. W., Jankauskiene, Z., & Fu, W. Y. (2015). A comparative study between Europe and China in crop management of two types of flax: linseed and fibre flax. Industrial Crops and Products, 68, 24-31. https://doi.org/10.1016/j.indcrop.2014.07.010

Henry, R. J. (2010). Evaluation of plant biomass resources available for replacement of fossil oil. Plant Biotechnology Journal, 8(3), 288-293. https://doi.org/10.1111/j.1467-7652.2009.00482.x

Holovenko, T., Kozel, V., Shovkomud, O., Puts, V., & Nazarchuk, L. (2019). Innovative methodology and software for quality control of new bast raw material with oilseed flax. Fibres and Textiles, 2, 18-24.

Hunt, D. (2001). Farm power and machinery management (10th ed.). Ames, Iowa, the USA. Iowa State University Press.

Ioelovich, M. (2015). Recent findings and the energetic potential of plant biomass as a renewable source of biofuels – a review. BioResources, 10(1), 1879-1914.

Kaliyan, N., & Vance Morey, R. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337-359. https://doi.org/10.1016/j.biombioe.2008.08.005

Kerckhoffs, H., & Renquist, R. (2013). Biofuel from plant biomass. Agronomy for Sustainable Development, 33, 1-19. https://doi.org/10.1007/s13593-012-0114-9

Khan, S. U., Labonne, L., Ouagne, P., & Evon, P. (2021). Continuous mechanical extraction of fibres from linseed flax straw for subsequent geotextile applications. Coatings, 11(7), 852. https://doi.org/10.3390/coatings11070852

Komlajeva, L., & Adamovics, A. (2012). Evaluation of flax (Linum usitatissimum L.) quality parameters for bioenergy production. Engineering for Rural Development, 11, 490-495.

Kristensen, E. F., & Kristensen, J. K. (2004). Development and test of small-scale batch-fired straw boilers in Denmark. Biomass and Bioenergy, 26(6), 561-569. https://doi.org/10.1016/j.biombioe.2003.09.006

Kymalainen, H., Koivula, M., Kuisma, R., Sjoberg, A.-M., & Pehkonen, A. (2004). Technologically indicative properties of straw fractions of flax, linseed (Linum usitatissimum L.) and fibre hemp (Cannabis sativa L.). Bioresource Technology, 94(1), 57-63. https://doi.org/10.1016/j.biortech.2003.11.027

Lafond, G. P., Irvine, B., Johnston, A. M., May, W. E., McAndrew, D. W., Shirtliffe, S. J., & Stevenson, F. C. (2008). Impact of agronomic factors on seed yield formation and quality in flax. Canadian Journal of Plant Science, 88, 485-500.

Lu, H., Zhu, L., & Zhu, N. (2009). Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmospheric Environment, 43(4), 978–983. https://doi.org/10.1016/j.atmosenv.2008.10.022

Lugovoy, Y., Chalov, K., Kosivtsov, Y., Sidorov, A., & Sulman, M. G. (2021). Slow pyrolysis of flax production waste. Chemical Engineering Transactions, 88, 331-336. https://doi.org/10.3303/CET2188055

Mladenović, R., Dakić, D., Erić, A., Mladenović, M., Paprika, M., & Repić, B. (2009). The boiler concept for combustion of large soya straw bales. Energy, 34(5), 715-723. https://doi.org/10.1016/j.energy.2009.02.003

Mohabeer, C., Reyes, L., Abdelouahed, L., Marcotte, S., Buvat, J.-C., Tidahy, L., Abi-Aad, E., & Taouk, B. (2019). Production of liquid bio-fuel from catalytic de-oxygenation: Pyrolysis of beech wood and flax shives. Journal of Fuel Chemistry and Technology, 47(2), 153-166. https://doi.org/10.1016/s1872-5813(19)30008-8

Morissette, R., Savoie, P., & Villeneuve, J. (2013). Corn stover and wheat straw combustion in a 176-kw boiler adapted for round bales. Energies, 6(11), 5760-5774. https://doi.org/10.3390/en6115760

Mukhambet, Y., Shah, D., Tatkeyeva, G., & Sarbassov, Y. (2022). Slow pyrolysis of flax straw biomass produced in Kazakhstan: Characterization of enhanced tar and high-quality biochar. Fuel, 324(B), 124676. https://doi.org/10.1016/j.fuel.2022.124676

Nag, S., Mitra, J., & Karmakar, P. G. (2015). An overview on flax (Linum usitatissimum L.) and its genetic diversity. International Journal of Agriculture, Environment and Biotechnology, 8(4), 805-817. https://doi.org/10.5958/2230-732X.2015.00089.3

Naik, S., Goud, V. V., Rout, P. K., Jacobson, K., & Dalai, A. K. (2010). Characterization of Canadian biomass for alternative renewable biofuel. Renewable Energy, 35(8), 1624-1631. https://doi.org/10.1016/j.renene.2009.08.033

Ning, P., Yang, G., Hu, L., Sun, J., Shi, L., Zhou, Y., Wang, Z., & Yang, J. (2021). Recent advances in the valorization of plant biomass. Biotechnology for Biofuels, 14, 102. https://doi.org/10.1186/s13068-021-01949-3

Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2020). Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: Experimental and thermodynamic modeling. Energy Conversion and Management, 208, 112545. https://doi.org/10.1016/j.enconman.2020.112545

Omer, T. A., Amal, M. A. El-Borhamy, & Maysa, S. Abd. El-Sadek. (2020). Effect of harvesting dates and seeding rates on yield and yield components of some flax varieties. Journal of Plant Production, 11(12), 1501-1505. https://doi.org/10.21608/jpp.2021.55272.1012

Pari, L., Baraniecki, P., Kaniewski, R., & Scarfone, A. (2015). Harvesting strategies of bast fiber crops in Europe and in China. Industrial Crops and Products, 68, 90-96. https://doi.org/10.1016/j.indcrop.2014.09.010

Pavlov, S. B. (2020). Improving the efficiency of the flax complex in Novgorod region. IOP Conf. Series: Earth and Environmental Science, 613, 012104. https://doi.org/10.1088/1755-1315/613/1/012104

Pisupati, A., Willaert, L., Goethals, F., Uyttendaele, W., & Park, C. H. (2021). Variety and growing condition effect on the yield and tensile strength of flax fibers. Industrial Crops and Products, 170, 113736. https://doi.org/10.1016/j.indcrop.2021.113736

Pochanin, Y. (2007). Selection of optimal patterns of straw burning in heating plants (Выбор рациональных схем сжигания соломы в тепловых установках). In Sakharov Readings 2007: Environmental Problems of the XXI Century (pp. 274-275). (in Russian)

Rentsen, B. (2010). Characterization of flax shives and factors affecting the quality of fuel pellets from flax shives [Thesis of the Degree of Master of Science]. University of Saskatchewan, Saskatoon, Canada.

Román, F. D., & Hensel, O. (2014). Numerical simulations and experimental measurements on the distribution of air and drying of round hay bales. Biosystems Engineering, 122, 1-15. https://doi.org/10.1016/j.biosystemseng.2014.03.008

Rudik, Al. L. (2016). Agrotechnology aspects to the assessment of oil flax growing of double use. Ekologiya & Stroitelstvo, 3, 15-22. (in Russian)

Sankari, H. S. (2000). Linseed (Linum usitatissimum L.) cultivars and breeding lines as stem biomass producers. Journal of Agronomy and Crop Science, 184(4), 225-231. https://doi.org/10.1046/j.1439-037x.2000.00375.x

Shinners, K. J., Barnett, N. G., & Schlesser, W. M. (2000). Measuring mass-flow-rate and moisture on a large square baler. In 2000 ASAE Annual International Meeting (pp. 001037). Milwaukee, WI.

Shinners, K. J., Straub, R. J., Huhnke, R. L., & Undersander, D. J. (1996). Harvest and storage losses associated with mid-size rectangular bales. Applied Engineering in Agriculture, 12(2), 167-173. https://doi.org/10.13031/2013.25636

Sun, Y., Buescher, W., Lin, J., Schulze Lammers, P., Ross, F., Maack, C., Cheng, Q., & Sun, W. (2010). An improved penetrometer technique for determining bale density. Biosystems Engineering, 105(2), 273-277. https://doi.org/10.1016/j.biosystemseng.2009.09.020

Tushar, M. S. H. K., Mahinpey, N., Khan, A., Ibrahim, H., Kumar, P., & Idem, R. (2012). Production, characterization and reactivity studies of chars produced by the isothermal pyrolysis of flax straw. Biomass and Bioenergy, 37, 97-105. https://doi.org/10.1016/j.biombioe.2011.12.027

Tushar, M. S. H. K., Mahinpey, N., Murugan, P., & Mani, T. (2010). Analysis of gaseous and liquid products from pressurized pyrolysis of flax straw in a fixed bed reactor. Industrial & Engineering Chemistry Research, 49(10), 4627-4632. https://doi.org/10.1021/ie902036v

Vahdanjoo, M., Nørremark, M., & Sørensen, C. G. (2021). A system for optimizing the process of straw bale retrieval. Sustainability, 13(14), 7722. https://doi.org/10.3390/su13147722

Vinogradov, D. V., Polyakov, A. V., & Kuntsevich, A. A. (2012). Influence of technology of growing on yield and oil chemical composition of linseed in Non-chernozem zone of Russia. Journal of Agricultural Sciences, 57(3), 135-142. https://doi.org/10.2298/JAS1203135V

Yaheliuk, S., Didukh, V., Busnyuk, V., Boyko, G., & Shubalyi, O. (2020). Optimization on efficient combustion process of small-sized fuel rolls made of oleaginous flax residues. INMATEH – Agricultural Engineering, 62(3), 361-368. https://doi.org/10.35633/inmateh-62-38

Yang, Y. B., Newman, R., Sharifi, V., Swithenbank, J., & Ariss, J. (2007). Mathematical modelling of straw combustion in a 38MWe power plant furnace and effect of operating conditions. Fuel, 86(1-2), 129-142. https://doi.org/10.1016/j.fuel.2006.06.023

Zając, T., Oleksy, A., Klimek-Kopyra, A., & Kulig, B. (2012). Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.). Acta Agrobotanica, 65(4), 3-14. https://doi.org/10.5586/aa.2012.016

Zatta, A., Vecchi, S., Gobbo, R., & Monti, A. (2010). Complementary use of long and short hemp fibres and shives for textile and second generation biofuels. In 18th European Biomass Conference and Exhibition (pp. 427-428), 3–7 May 2010, Lyon, France.

Zhang, Q., Gao, Y., Yan, B., Cui, Z., Wu, B., Yang, K., & Ma, J. (2020). Perspective on oil flax yield and dry biomass with reduced nitrogen supply. Oil Crop Science, 5(2), 42-46. https://doi.org/10.1016/j.ocsci.2020.04.004

Zhang, Z.-S., Wang, L.-J., Li, D., Li, S.-J., & Özkan, N. (2011). Characteristics of flaxseed oil from two different flax plants. International Journal of Food Properties, 14(6), 1286-1296. https://doi.org/10.1080/10942911003650296

Zhao, X., Zhang, J., Song, Z., Liu, H., Li, L., & Ma, C. (2011). Microwave pyrolysis of straw bale and energy balance analysis. Journal of Analytical and Applied Pyrolysis, 92(1), 43-49. https://doi.org/10.1016/j.jaap.2011.04.004

Zuk, M., Richter, D., Matuła, J., & Szopa, J. (2015). Linseed, the multipurpose plant. Industrial Crops and Products, 75, Part B, 165-177. https://doi.org/10.1016/j.indcrop.2015.05.005

Published
2022-10-31
Section
Статті