RESULTS OF EXPERIMENTAL RESEARCH OF THE HOMOGENIZER-DISPERSER OF LIQUID FEED FOR PIGS

  • E. Aliiev Dnipro State Agrarian and Economic University, Dnipro, Ukraine
  • R. Maliehin Dnipro State Agrarian and Economic University, Dnipro, Ukraine
Keywords: liquid feed, homogenization, dispergation, swine breeding, feed production

Abstract

Effective pig farming is impossible without providing animals with high quality, balanced feed at a competitive price and in the required quantity. The article analyzes the dependences determined during the experiment between various parameters of liquid feed production. In particular, changes in the content of 0–0.5 mm particles in the mixture depend on the frequency of rotation of the rotor, the diameter of the stator inlet and the operating time of the equipment. It was also found that the index of stratification of the mixture varies depending on the same parameters. The temperature of the mixture, the power consumption of the electric motor and the energy consumption also change according to the frequency of rotation of the rotor, the diameter of the inlet hole of the stator and the operating time of the equipment. The energy consumption was calculated as the product of the power consumption of the electric motor and the operating time of the equipment. In order to evaluate the influence of each of these factors on the optimization criteria of the liquid feed preparation process, studies were conducted according to the Box-Benkin D-optimal plan matrix of the second order for three factors. Each experiment was carried out in three replicates to ensure the reliability of the results obtained. The dependencies of the specific energy consumption for the execution of the process also vary from these factors. Particularly interesting is the fact that when the value of the indicator of stratification of the mixture is less than 5% and the efficiency indicator is minimized, the optimal value of the equipment operation time is observed in the range from 45.1 to 50.4 minutes for different types of input material. The specific energy consumption indicator also depends on the type of grain used. The lowest specific energy consumption is: for soybeans – 0.696 MJ/kg, for wheat – 0.794 MJ/kg, for barley – 0.896 MJ/kg.

References

Aliiev, E., Maliehin, R., Ivliev, V., & Aliieva, O. (2021). Simulation of the process of cavitation treatment of liquid feed. Scientific Horizons, 24(2), 16-26. https://doi.org/10.48077/scihor.24(2).2021.16-26

Asaithambi, N., Singha, P., Dwivedi, M., & Singh, S. K. (2019). Hydrodynamic cavitation and its application in food and beverage industry: A review. Food Process Engineering, 42(5), e13144. https://doi.org/10.1111/jfpe.13144

Askarniya, Z., Sun, X., Wang, Z., & Boczkaj, G. (2023). Cavitation-based technologies for pretreatment and processing of food wastes: Major applications and mechanisms – A review. Chemical Engineering Journal, 454(4), 140388. https://doi.org/10.1016/j.cej.2022.140388

Atiemo-Obeng, V. A., & Calabrese, R. V. (2003). Rotor-stator mixing devices. In Edward L. Paul, Victor A. Atiemo-Obeng, & Suzanne M. Kresta (Eds.), Handbook of Industrial Mixing: Science and Practice (pp. 479-505). https://doi.org/10.1002/0471451452.ch8

Camp Montoro, J., Pessoa, J., Solà-Oriol, D., Muns, R., Gasa, J., & Manzanilla, E. G. (2022). Effect of phase feeding, space allowance and mixing on productive performance of grower-finisher pigs. Animals (Basel), 12(3), 390. https://doi.org/10.3390/ani12030390

Delsart, M., Pol, F., Dufour, B., Rose, N., & Fablet, C. (2020). Pig farming in alternative systems: Strengths and challenges in terms of animal welfare, biosecurity, animal health and pork safety. Agriculture, 10(7), 261. https://doi.org/10.3390/agriculture10070261

Dickey, D. S. (2015). Fundamentals of high-shear dispersers: Successful dispersion depends on a basic understanding of dispersion equipment and how dispersers should be used. Chemical Engineering, 122(2), 40-47.

Everitt, B., & Hothorn, T. (2009). A handbook of statistical analyses using R (2nd ed.). Chapman and Hall/CRC.

Jung, H., Lee, Y. J., & Yoon, W. B. (2018). Effect of moisture content on the grinding process and powder properties in food: A review. Processes, 6(6), 69. https://doi.org/10.3390/pr6060069

Kim, J. S., Ingale, S. L., Baidoo, S. K., & Chae, B. J. (2016). Impact of feed processing technology on nutritional value of pig feed: A review. Animal Nutrition and Feed Technology, 16(2), 181-196. https://doi.org/10.5958/0974-181X.2016.00017.2

Lesmes, U., Barchechath, J., & Shimoni, E. (2008). Continuous dual feed homogenization for the production of starch inclusion complexes for controlled release of nutrients. Innovative Food Science & Emerging Technologies, 9(4), 507-515. https://doi.org/10.1016/j.ifset.2007.12.008

Millet, S., Meyns, T., Aluwé, M., De Brabander, D., & Ducatelle, R. (2010). Effect of grinding intensity and crude fibre content of the feed on growth performance and gastric mucosa integrity of growing–finishing pigs. Livestock Science, 134(1-3), 152-154. https://doi.org/10.1016/j.livsci.2010.06.123

Osorio-Arias, J. C., Vega-Castro, O., & Martínez-Monteagudo, S. I. (2021). Fundamentals of high-pressure homogenization of foods. Innovative Food Processing Technologies, 2021, 244-273. https://doi.org/10.1016/B978-0-08-100596-5.23021-7

Romaniuk, W., Savinykh, P., Borek, K., Roman, K., Isupov, A. Y., Moshonkin, A., Wałowski, G., & Roman, M. (2021). The application of similarity theory and dimensional analysis to the study of centrifugal-rotary chopper of forage grain. Energies, 14(15), 4501. https://doi.org/10.3390/en14154501

Shumway, R. H., & Stoffer, D. S. (2011). Time series analysis and its applications: With R examples (3rd ed.). New York: Springer.

Sun, X., You, W., Wu, Y., Tao, Y., Yoon, J. Y., Zhang, X., & Xuan, X. (2022). Hydrodynamic cavitation: A novel non-thermal liquid food processing technology. Frontiers in Nutrition, 9, 843808. https://doi.org/10.3389/fnut.2022.843808

van Klompenburg, T., & Kassahun, A. (2022). Data-driven decision making in pig farming: A review of the literature. Livestock Science, 261, 104961. https://doi.org/10.1016/j.livsci.2022.104961

Zhou, P., Zhong, K., & Zhu, Y. (2024). Numerical study of hydrodynamic cavitation pretreatment of food waste: Effect of pressure drop on the cavitation behavior. Processes, 12(2), 300. https://doi.org/10.3390/pr12020300

Zhu, X., Das, R. S., Bhavya, M. L., Garcia-Vaquero, M., & Tiwari, B. K. (2024). Acoustic cavitation for agri-food applications: Mechanism of action, design of new systems, challenges and strategies for scale-up. Ultrasonics Sonochemistry, 105, 106850. https://doi.org/10.1016/j.ultsonch.2024.106850

Алієв, Е. Б. (2023). Чисельне моделювання процесів агропромислового виробництва (Numerical simulation of agricultural production processes). Київ: Аграрна наука. https://doi.org/10.31073/978-966-540-584-9

Кисельов, О. В., Комарова, І. Б., Мілько, Д. О., & Бакарджиєв, Р. О. (2017). Статистична обробка і оформлення результатів експериментальних досліджень (із досвіду написання дисертаційних робіт) (Statistical processing and design of the results of experimental studies (from the experience of writing dissertations)). Інститут механізації тваринництва НААН. Запоріжжя: СТАТУС.

Повод, М., Бондарська, О., Лихач, В., Жижка, С., Нечмілов, В., та ін. (2021). Технологія виробництва і переробки продукції свинарства (Technology of production and processing of pig products). Київ: Науково-методичний центр ВФПО.

Published
2024-07-13
Section
Статті