ТЕХНОЛОГІЯ ЗБИРАННЯ НИЗЬКОЯКІСНОЇ ЛЛЯНОЇ БІОМАСИ ДЛЯ ПОДАЛЬШОГО ЇЇ ВИКОРИСТАННЯ ЯК ПАЛИВА: ОГЛЯД
Анотація
Несприятливі умови для вирощування льону, його збирання та вилежування є причиною отримання низькоякісної біомаси льону. Ця біомаса не може бути перероблена на волокно чи інші цілі. Тому низькоякісну льоносолому спалюють на полях або використовують як добриво шляхом заорювання в ґрунт, що зумовлює негативний вплив на навколишнє середовище та ускладнює проведення подальших технологічних операцій з ґрунтом. У статті представлені граничні значення якісних показників стебел льону, льоносоломи та лляної трести, за яких вони придатні для промислового перероблення або отримана лляна біомаса придатна лише для використання у вигляді палива. Низькоякісна лляна біомаса є недорогою, екологічною та відновлюваною сировиною, яку можна використовувати як тверде паливо для опалення теплиць або будівель, що розташовані поблизу поля, де вирощують льон. У статті представлені різні технології збирання льону-довгунця та льону олійного. Також рекомендується технологія збирання низькоякісного льону, що передбачає технологічні операції: брання або скошування льону, обмолочування льону, формування валка льоносоломи, природне сушіння льоносоломи на полі, формування тюків льоносоломи, транспортування тюків льоносоломи, спалювання тюків льоносоломи. Цю технологію збирання можна використовувати для льону-довгунця якості та льону олійного, що мають низьку якість. Лляну біомасу можна спресовувати в три типи тюків: малі прямокутні тюки, великі круглі тюки (рулони) та великі квадратні тюки. У статті рекомендовані основні вимоги до паливних тюків лляної біомаси. Зазначено, що котел для спалювання льоносоломи необхідно вибирати з урахуванням форми і розміру тюків. Для ефективної роботи котлів необхідно враховувати рекомендовані значення щільності тюків і вологості лляної біомаси.
Посилання
Afzalinia, S. (2005). Modeling and validation of the baling process in the compression chamber of a large square baler [Thesis of the Degree of Doctor of philosophy]. University of Saskatchewan, Saskatoon, Canada.
Anthony, W. S. (2005). Development of machines to separate fiber and shive from seed flax straw. Applied Engineering in Agriculture, 21(6), 1057-1063. https://doi.org/10.13031/2013.20022
Asokan, M. A., Prabu, S. S., Prathiba, S., Akhil, V. S., Abishai, L. D., & Surejlal, M. E. (2021). Emission and performance behaviour of flax seed oil biodiesel/diesel blends in DI diesel engine. Materials Today: Proceedings, 46, 8148-8152. https://doi.org/10.1016/j.matpr.2021.03.108
Bar, M., Grégoire, M., Khan, S. U., De Luycker, E., & Ouagne, P. (2022). Studies on classically harvested linseed flax fibers for bio-composite reinforcement and textile applications. Journal of Natural Fibers. (in press). https://doi.org/10.1080/15440478.2021.2024934
Bourmaud, A., Gibaud, M., & Baley, C. (2016). Impact of the seeding rate on flax stem stability and the mechanical properties of elementary fibres. Industrial Crops and Products, 80, 17-25. https://doi.org/10.1016/j.indcrop.2015.10.053
Casa, R., Russell, G., Lo Cascio, B., & Rossini, F. (1999). Environmental effects on linseed (Linum usitatissimum L.) yield and growth of flax at different stand densities. European Journal of Agronomy, 11(3-4), 267-278. https://doi.org/10.1016/s1161-0301(99)00037-4
Chakraborty, S., Aggarwal, V., Mukherjee, D., & Andras, K. (2012). Biomass to biofuel: a review on production technology. Asia-Pacific Journal of Chemical Engineering, 7, S254-S262. https://doi.org/10.1002/apj.1642
Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech, 3, 415-431. https://doi.org/10.1007/s13205-013-0167-8
Chen, S., Zhao, Y., Tang, Z., Ding, H., Su, Z., & Ding, Z. (2022). Structural model of straw briquetting machine with vertical ring die and optimization of briquetting performance. Agriculture, 12, 736. https://doi.org/10.3390/agriculture12050736
Chen, Y., Tessier, S., Cavers, C., Xu, X., & Monero, F. (2005). A survey of crop residue burning practices in Manitoba. Applied Engineering in Agriculture, 21(3), 317-323. https://doi.org/10.13031/2013.18446
Dedovic, N., Igic, S., Janic, T., Matic-Kekic, S., Ponjican, O., Tomic, M., & Savin, L. (2012). Efficiency of small scale manually fed boilers – mathematical models. Energies, 5(5), 1470-1489. https://doi.org/10.3390/en5051470
Demura, T., & Ye, Z.-H. (2010). Regulation of plant biomass production. Current Opinion in Plant Biology, 13(3), 298-303. http://doi.org/10.1016/j.pbi.2010.03.002
Descôteaux, S., & Savoie, P. (2003). Development and evaluation of a dryer for big square hay bales. In CSAE/SCGR 2003 Meeting (pp. 03-212). Montréal, Québec, Canada.
Dmitrevskaya, I. I., Stepanova, D. S., Belopukhov, S. L., & Mazirov, M. A. (2016). Yield of fiber flax in long-term field experiment. Zemledelie, 7, 42-44. (in Russian)
Dudarev, I. (2020). A review of fibre flax harvesting: conditions, technologies, processes and machines. Journal of Natural Fibers (in press). http://doi.org/10.1080/15440478.2020.1863296
Flax straw and fibre past and present uses. Chapter 12. (n.d.). In J. C. P. Dribnenki (ed.), 5th ed., Growing Flax. Production, Management & Diagnostic Guide. Flax Counsil of Canada (pp. 54-61), Winnipeg Manitoba, Canada.
Gibaud, M., Bourmaud, A., & Baley, C. (2015). Understanding the lodging stability of green flax stems; The importance of morphology and fibre stiffness. Biosystems Engineering, 137, 9-21. http://doi.org/10.1016/j.biosystemseng.2015.06.005
Gomez, L. D., Steele-King, C. G., & McQueen-Mason, S. J. (2008). Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytologist, 178, 473-485. https://doi.org/10.1111/j.1469-8137.2008.02422.x
González-García, S., Luo, L., Moreira, M. T., Feijoo, G., & Huppes, G. (2009). Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain. Renewable and Sustainable Energy Reviews, 13(8), 1922-1933. http://doi.org/10.1016/j.rser.2009.02.003
GOST 24383-89. (1990). Retted stalks. Requirements for State Purchases (ГОСТ 28285-89. (1990). Треста льняная. Требования при заготовках. Издательство стандартов). (in Russian)
GOST 28285-89. (1990). Flax straw. Requirements for State Purchases (ГОСТ 28285-89. (1990). Солома льняная. Требования при заготовках. Издательство стандартов). (in Russian)
Goudenhooft, C., Alméras, T., Bourmaud, A., & Baley, C. (2019). The remarkable slenderness of flax plant and pertinent factors affecting its mechanical stability. Biosystems Engineering, 178, 1-8. https://doi.org/10.1016/j.biosystemseng.2018
Grégoire, M., Bar, M., De Luycker, E., Musio, S., Amaducci, S., Gabrion, X., Placet, V., & Ouagne, P. (2021). Comparing flax and hemp fibres yield and mechanical properties after scutching/hackling processing. Industrial Crops and Products, 172, 114045. https://doi.org/10.1016/j.indcrop.2021.114045
Guerrieri, A. S., Anifantis, A. S., Santoro, F., & Pascuzzi, S. (2019). Study of a large square baler with innovative technological systems that optimize the baling effectiveness. Agriculture, 9(5), 86. https://doi.org/10.3390/agriculture9050086
Harry, I., Ibrahim, H., Thring, R., & Idem, R. (2014). Catalytic subcritical water liquefaction of flax straw for high yield of furfural. Biomass and Bioenergy, 71, 381-393. https://doi.org/10.1016/j.biombioe.2014.09.017
Heard, J., Cavers, C., & Adrian, G. (2006). Up in smoke – nutrient loss with straw burning. Better Crops, 90, 10-11.
Heller, K., Sheng, Q. C., Guan, F., Alexopoulou, E., Hua, L. S., Wu, G. W., Jankauskiene, Z., & Fu, W. Y. (2015). A comparative study between Europe and China in crop management of two types of flax: linseed and fibre flax. Industrial Crops and Products, 68, 24-31. https://doi.org/10.1016/j.indcrop.2014.07.010
Henry, R. J. (2010). Evaluation of plant biomass resources available for replacement of fossil oil. Plant Biotechnology Journal, 8(3), 288-293. https://doi.org/10.1111/j.1467-7652.2009.00482.x
Holovenko, T., Kozel, V., Shovkomud, O., Puts, V., & Nazarchuk, L. (2019). Innovative methodology and software for quality control of new bast raw material with oilseed flax. Fibres and Textiles, 2, 18-24.
Hunt, D. (2001). Farm power and machinery management (10th ed.). Ames, Iowa, the USA. Iowa State University Press.
Ioelovich, M. (2015). Recent findings and the energetic potential of plant biomass as a renewable source of biofuels – a review. BioResources, 10(1), 1879-1914.
Kaliyan, N., & Vance Morey, R. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337-359. https://doi.org/10.1016/j.biombioe.2008.08.005
Kerckhoffs, H., & Renquist, R. (2013). Biofuel from plant biomass. Agronomy for Sustainable Development, 33, 1-19. https://doi.org/10.1007/s13593-012-0114-9
Khan, S. U., Labonne, L., Ouagne, P., & Evon, P. (2021). Continuous mechanical extraction of fibres from linseed flax straw for subsequent geotextile applications. Coatings, 11(7), 852. https://doi.org/10.3390/coatings11070852
Komlajeva, L., & Adamovics, A. (2012). Evaluation of flax (Linum usitatissimum L.) quality parameters for bioenergy production. Engineering for Rural Development, 11, 490-495.
Kristensen, E. F., & Kristensen, J. K. (2004). Development and test of small-scale batch-fired straw boilers in Denmark. Biomass and Bioenergy, 26(6), 561-569. https://doi.org/10.1016/j.biombioe.2003.09.006
Kymalainen, H., Koivula, M., Kuisma, R., Sjoberg, A.-M., & Pehkonen, A. (2004). Technologically indicative properties of straw fractions of flax, linseed (Linum usitatissimum L.) and fibre hemp (Cannabis sativa L.). Bioresource Technology, 94(1), 57-63. https://doi.org/10.1016/j.biortech.2003.11.027
Lafond, G. P., Irvine, B., Johnston, A. M., May, W. E., McAndrew, D. W., Shirtliffe, S. J., & Stevenson, F. C. (2008). Impact of agronomic factors on seed yield formation and quality in flax. Canadian Journal of Plant Science, 88, 485-500.
Lu, H., Zhu, L., & Zhu, N. (2009). Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmospheric Environment, 43(4), 978–983. https://doi.org/10.1016/j.atmosenv.2008.10.022
Lugovoy, Y., Chalov, K., Kosivtsov, Y., Sidorov, A., & Sulman, M. G. (2021). Slow pyrolysis of flax production waste. Chemical Engineering Transactions, 88, 331-336. https://doi.org/10.3303/CET2188055
Mladenović, R., Dakić, D., Erić, A., Mladenović, M., Paprika, M., & Repić, B. (2009). The boiler concept for combustion of large soya straw bales. Energy, 34(5), 715-723. https://doi.org/10.1016/j.energy.2009.02.003
Mohabeer, C., Reyes, L., Abdelouahed, L., Marcotte, S., Buvat, J.-C., Tidahy, L., Abi-Aad, E., & Taouk, B. (2019). Production of liquid bio-fuel from catalytic de-oxygenation: Pyrolysis of beech wood and flax shives. Journal of Fuel Chemistry and Technology, 47(2), 153-166. https://doi.org/10.1016/s1872-5813(19)30008-8
Morissette, R., Savoie, P., & Villeneuve, J. (2013). Corn stover and wheat straw combustion in a 176-kw boiler adapted for round bales. Energies, 6(11), 5760-5774. https://doi.org/10.3390/en6115760
Mukhambet, Y., Shah, D., Tatkeyeva, G., & Sarbassov, Y. (2022). Slow pyrolysis of flax straw biomass produced in Kazakhstan: Characterization of enhanced tar and high-quality biochar. Fuel, 324(B), 124676. https://doi.org/10.1016/j.fuel.2022.124676
Nag, S., Mitra, J., & Karmakar, P. G. (2015). An overview on flax (Linum usitatissimum L.) and its genetic diversity. International Journal of Agriculture, Environment and Biotechnology, 8(4), 805-817. https://doi.org/10.5958/2230-732X.2015.00089.3
Naik, S., Goud, V. V., Rout, P. K., Jacobson, K., & Dalai, A. K. (2010). Characterization of Canadian biomass for alternative renewable biofuel. Renewable Energy, 35(8), 1624-1631. https://doi.org/10.1016/j.renene.2009.08.033
Ning, P., Yang, G., Hu, L., Sun, J., Shi, L., Zhou, Y., Wang, Z., & Yang, J. (2021). Recent advances in the valorization of plant biomass. Biotechnology for Biofuels, 14, 102. https://doi.org/10.1186/s13068-021-01949-3
Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2020). Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: Experimental and thermodynamic modeling. Energy Conversion and Management, 208, 112545. https://doi.org/10.1016/j.enconman.2020.112545
Omer, T. A., Amal, M. A. El-Borhamy, & Maysa, S. Abd. El-Sadek. (2020). Effect of harvesting dates and seeding rates on yield and yield components of some flax varieties. Journal of Plant Production, 11(12), 1501-1505. https://doi.org/10.21608/jpp.2021.55272.1012
Pari, L., Baraniecki, P., Kaniewski, R., & Scarfone, A. (2015). Harvesting strategies of bast fiber crops in Europe and in China. Industrial Crops and Products, 68, 90-96. https://doi.org/10.1016/j.indcrop.2014.09.010
Pavlov, S. B. (2020). Improving the efficiency of the flax complex in Novgorod region. IOP Conf. Series: Earth and Environmental Science, 613, 012104. https://doi.org/10.1088/1755-1315/613/1/012104
Pisupati, A., Willaert, L., Goethals, F., Uyttendaele, W., & Park, C. H. (2021). Variety and growing condition effect on the yield and tensile strength of flax fibers. Industrial Crops and Products, 170, 113736. https://doi.org/10.1016/j.indcrop.2021.113736
Pochanin, Y. (2007). Selection of optimal patterns of straw burning in heating plants (Выбор рациональных схем сжигания соломы в тепловых установках). In Sakharov Readings 2007: Environmental Problems of the XXI Century (pp. 274-275). (in Russian)
Rentsen, B. (2010). Characterization of flax shives and factors affecting the quality of fuel pellets from flax shives [Thesis of the Degree of Master of Science]. University of Saskatchewan, Saskatoon, Canada.
Román, F. D., & Hensel, O. (2014). Numerical simulations and experimental measurements on the distribution of air and drying of round hay bales. Biosystems Engineering, 122, 1-15. https://doi.org/10.1016/j.biosystemseng.2014.03.008
Rudik, Al. L. (2016). Agrotechnology aspects to the assessment of oil flax growing of double use. Ekologiya & Stroitelstvo, 3, 15-22. (in Russian)
Sankari, H. S. (2000). Linseed (Linum usitatissimum L.) cultivars and breeding lines as stem biomass producers. Journal of Agronomy and Crop Science, 184(4), 225-231. https://doi.org/10.1046/j.1439-037x.2000.00375.x
Shinners, K. J., Barnett, N. G., & Schlesser, W. M. (2000). Measuring mass-flow-rate and moisture on a large square baler. In 2000 ASAE Annual International Meeting (pp. 001037). Milwaukee, WI.
Shinners, K. J., Straub, R. J., Huhnke, R. L., & Undersander, D. J. (1996). Harvest and storage losses associated with mid-size rectangular bales. Applied Engineering in Agriculture, 12(2), 167-173. https://doi.org/10.13031/2013.25636
Sun, Y., Buescher, W., Lin, J., Schulze Lammers, P., Ross, F., Maack, C., Cheng, Q., & Sun, W. (2010). An improved penetrometer technique for determining bale density. Biosystems Engineering, 105(2), 273-277. https://doi.org/10.1016/j.biosystemseng.2009.09.020
Tushar, M. S. H. K., Mahinpey, N., Khan, A., Ibrahim, H., Kumar, P., & Idem, R. (2012). Production, characterization and reactivity studies of chars produced by the isothermal pyrolysis of flax straw. Biomass and Bioenergy, 37, 97-105. https://doi.org/10.1016/j.biombioe.2011.12.027
Tushar, M. S. H. K., Mahinpey, N., Murugan, P., & Mani, T. (2010). Analysis of gaseous and liquid products from pressurized pyrolysis of flax straw in a fixed bed reactor. Industrial & Engineering Chemistry Research, 49(10), 4627-4632. https://doi.org/10.1021/ie902036v
Vahdanjoo, M., Nørremark, M., & Sørensen, C. G. (2021). A system for optimizing the process of straw bale retrieval. Sustainability, 13(14), 7722. https://doi.org/10.3390/su13147722
Vinogradov, D. V., Polyakov, A. V., & Kuntsevich, A. A. (2012). Influence of technology of growing on yield and oil chemical composition of linseed in Non-chernozem zone of Russia. Journal of Agricultural Sciences, 57(3), 135-142. https://doi.org/10.2298/JAS1203135V
Yaheliuk, S., Didukh, V., Busnyuk, V., Boyko, G., & Shubalyi, O. (2020). Optimization on efficient combustion process of small-sized fuel rolls made of oleaginous flax residues. INMATEH – Agricultural Engineering, 62(3), 361-368. https://doi.org/10.35633/inmateh-62-38
Yang, Y. B., Newman, R., Sharifi, V., Swithenbank, J., & Ariss, J. (2007). Mathematical modelling of straw combustion in a 38MWe power plant furnace and effect of operating conditions. Fuel, 86(1-2), 129-142. https://doi.org/10.1016/j.fuel.2006.06.023
Zając, T., Oleksy, A., Klimek-Kopyra, A., & Kulig, B. (2012). Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.). Acta Agrobotanica, 65(4), 3-14. https://doi.org/10.5586/aa.2012.016
Zatta, A., Vecchi, S., Gobbo, R., & Monti, A. (2010). Complementary use of long and short hemp fibres and shives for textile and second generation biofuels. In 18th European Biomass Conference and Exhibition (pp. 427-428), 3–7 May 2010, Lyon, France.
Zhang, Q., Gao, Y., Yan, B., Cui, Z., Wu, B., Yang, K., & Ma, J. (2020). Perspective on oil flax yield and dry biomass with reduced nitrogen supply. Oil Crop Science, 5(2), 42-46. https://doi.org/10.1016/j.ocsci.2020.04.004
Zhang, Z.-S., Wang, L.-J., Li, D., Li, S.-J., & Özkan, N. (2011). Characteristics of flaxseed oil from two different flax plants. International Journal of Food Properties, 14(6), 1286-1296. https://doi.org/10.1080/10942911003650296
Zhao, X., Zhang, J., Song, Z., Liu, H., Li, L., & Ma, C. (2011). Microwave pyrolysis of straw bale and energy balance analysis. Journal of Analytical and Applied Pyrolysis, 92(1), 43-49. https://doi.org/10.1016/j.jaap.2011.04.004
Zuk, M., Richter, D., Matuła, J., & Szopa, J. (2015). Linseed, the multipurpose plant. Industrial Crops and Products, 75, Part B, 165-177. https://doi.org/10.1016/j.indcrop.2015.05.005