Modeling and Optimal Control of the Ethanol Production Process Using the Spatial State Approach
DOI:
https://doi.org/10.36910/4293-52779-2025-17-02-06Keywords:
optimal control,, dynamic modeling, ethanol production, state space systemAbstract
This paper considers the process of preparing a mixture that can be used to optimize the production of food and fuel ethanol. An automatic system for optimal control of the mixture preparation process has been developed, based on measuring the consumption of raw materials and the concentration of the mixture, as well as regulating the water supply. The proposed controller maintains the required mixture level by changing the flow rates. By changing the flow rates of the components, the optimal controller maintains a constant mixture concentration and stabilizes the flows. The developed improved optimal controller is based on robust control of a nonlinear process, which ensures more stable system operation, improved quality of the mash and the final ethanol product, smooth transitions between modes, and energy savings.
References
[1] C. A. Cardona Alzate, O. J. Sánchez Toro, Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass, Energy, Volume 31, Issue 13, 2006, Pages 2447-2459, ISSN 0360-5442.
[2] C. Tengborg et al. Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood Enzyme Microb Technol (2001) D. Gregg et al. Bioconversion of lignocellulosic residue to ethanol: process flowsheet development. Biomass Bioenergy (1995)
[3] D. Gregg et al. Techno-economic evaluation of a generic wood-to-ethanol process: effect of increased cellulose yields and enzyme recycle. Bioresource Technol. (1998)
[4] M. von Sivers et al. A techno-economical comparison of three processes for the production of ethanol from pine. Bioresource Technol. (1995)
[5] M. Galbe et al. Simulation of ethanol production processes based on enzymatic hydrolysis of woody biomass. Comput. Chem. Eng. (1994)
[6] R. P. Tengerdy et al. Bioconversion of lignocellulose in solid substrate fermentation. Biochem. Eng .J. (2003)
[7] L. Olsson et al. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. (1996).
[8] J.R. Moreira Sugarcane for energy-recent results and progress in Brazil Energy. Sust. Dev. (2000).
[9] Kuzmych, O., Hajjaji, A., Aitouche, A., Bosche, J. and Telmoudi, A. (2017). Sum of squares based nonlinear control design. application to biodiesel engine., IEEE Conference Publications: 2015 4th International Conference on Systems and Control (ICSC), Hammamet, Tunisia; IEEE Xplore Digital Library. DOI: 10.1109/CoDIT.2017.8102564.
[10] Brian, D., Anderson, O. and Moore, J. (1989). Optimal Control. Linear Quadratic Methods., Department of Systems Engineering, Australian National University, Canberra, Prentice-Hall International, Inc., ISBN 0-13 -638651-2.
[11] Wongsurakul, P.; Termtanun, M.; Kiatkittipong, W.; Lim, J.W.; Kiatkittipong, K.; Pavasant, P.; Kumakiri, I.; Assabumrungrat, S. Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria. Energies 2022, 5, 2986. https://doi.org/10.3390/en15092986
[12] Chen Chi Tsong. Linear System Theory and Design : 3 тє вид. : Oxford Univ. Press, 1998. 352 p.
[13] Christensen, E.; Fioroni, G.M.; Kim, S.; Fouts, L.; Gjersing, E.; Paton, R.S.; McCormick, R.L. Experimental and theoretical study Of oxidative stability of alkylated furans used as gasoline blend components. Fuel 2018, 212, 576–585. https://doi.org/10.1016/j.fuel.2017.10.066.
[14] Haaz, E.; Fozer, D.; Toth, A.J. Development of Anhydrous Ethanol Purification: Reduction of Acetal Content and Vapor–Liquid Equilibrium Study of the Ethanol–Acetal Binary System. ACS Omega 2021, 6, 1289–1298. https://doi.org/10.1021/acsomega.0c04750.
[15] Markina L., Palchevskyi B., Hrudetskyi R., Smoliankin O., Melnychuk Y., Khrystynets N. Optimization of Ethanol Production Using State-Space Modeling and Optimal Control Technology, 2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, 2023, pp. 38-45
[16] Lyudmila Markina, Viktor Satsyk, Oleksandr Reshetylo, Roman Hrudetskyi, Oleh Smoliankin and Nadiia Kuts. "Effective Ethanol Production Based on Intelligent Robust Control", Published in: Conference Program – 2024 13th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, October 11-13, 2024, Conference Timetable: p.2 - FRIDAY 11 OCTOBER 2024, paper ID 129.
[17] L. Markina, B. Palchevskyi, R. Hrudetskyi, O. Smoliankin, Y. Melnychuk and N. Khrystynets, "Optimization of Ethanol Production Using State-Space Modeling and Optimal Control Technology," Published in: Conference Program - 2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, October 13-15, 2023, Conference Timetable: p.2 - FRIDAY 13 OCTOBER 2023, paper ID 6224.
[18] Кузьмич О. І., Маркіна Л. М., Якимчук Л. М. Моделювання та розробка системи керування процесом змішування на базі процесу водно-теплової обробки при виробництві спирту. Комп’ютерно-інтегровані технології: освіта, наука, виробництво, № 30-31, Луцький НТУ, 2018. С. 220-227.
Published
Issue
Section
License
Copyright (c) 2025 Маркіна Л. М., Сацик В. О.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.