Simulation of Product Molding Processes from Powder and Porous Materials
DOI:
https://doi.org/10.36910/4293-52779-2025-17-02-05Keywords:
resource-saving technologies, powder metallurgy, dispersed systems, powder materials, porous blanks, plasticityAbstract
A mathematical model of the formation processes of structurally inhomogeneous porous materials has been developed. The model includes analytical, algorithmic and digital models. The relations of the theory of plasticity of a porous body are used. The theory of plasticity equations are allow to describe the deformation of both powder and porous blanks. Modeling was performed using the finite element method. Two cases of behaiour were considered: the plastic and elasto-plastic ones. Deformation problems were solved step by step, using the sequential loading method. At each of the stages, the necessary parameters of the model were determined as a result of the iterative proceedures. Algorithmic models were implemented in the form of corresponding digital models. In turn The digital model of plastic deformation has the following main blocks: a preprocessor, simulation module, and postprocessor. It is possible to use existing geometric modeling programs, as well as pre- and post-processing data processing programs. The digital model of elastic-plastic deformation was implemented in the form of subroutines, which were implemented in the finite element modeling software systems. To check the adequacy of the developed digital models, the obtained results were compared with experimental data and simulation results obtained by other authors. Double side pressing as well as the free uniaxial straining have been examined in our model to compare it with same pressing paths, obtained by another authors. The patterns of deformation of porous blanks during radial compaction along the inner diameter were studied. Deformation was carried out in two passes. It was established that the deformation of the material occurs locally. The influence of the number of passes on the evolution of the parameters that determine the properties of the products is shown.
References
[1] He Y., Wang Z., Evans T.J., Yu A.B., Yang R.Y. DEM study of the mechanical strength of iron ore compacts. Int. J. Miner. Process. 2015. Vol. 142. P. 73–81.
[2] Martin C. L., Bouvard D. and Shima S. Study of particle rearrangement during powder compaction by the discrete element method. Journal of the Mechanics and Physics of Solids. 2003. Vol. 51, Issue 4. P. 667-693.
[3] Martin C. L., Bouvard D., Delette G. Discrete element simulations of the compaction of aggregated ceramic powders. Journal of the American Ceramic Society. 2006. Vol. 89, Num. 11, P. 3379-3387.
[4] Феноменологические теории прессования порошков / М. Б. Штерн, Г. Г. Сердюк, Л. А. Максименко и др. Киев: Наукова думка, 1982. 140 с.
[5] Roscoe K.H., Schofield A.N., Wroth C.P. On the yielding of soils. Géotechnique. 1958. Vol. 8, Issue 1. P. 22‒53.
[6] Drucker D. C., Prager W. Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 1952. Vol. 10. P. 157‒165.
[7] DiMaggio F.L., Sandler I.S. Material model for granular soils. J. Eng. Mech. Div., ASCE, 1971. Vol. 97, Issue 3. P. 935‒950.
[8] Грин Р. Дж. Теория пластиности пористых тел. Механика, 1973. № 4. C. 109 - 120.
[9] Мартынова И. Ф., Штерн М. Б. Уравнение пластичности пористых тел, учитывающие истинные деформации металла основы. Порошковая металлургия. 1978. № 1. C. 23-29.
[10. Shima S., Oyane M. Plasticity theory for porous metals. Jut. Y. Mech. Sciences. 1976. V. 18. Vol. 6. P. 285-291.
[11] M. B. Shtern, O. V. Mikhailov, A. O. Mikhailov, Theory and technology of forming process generalized continuum model of plasticity of powder and porous materials, Powder Metallurgy and Metal Ceramics, Vol. 60, Nos. 1-2, May, 2021 (Russian Original Vol. 60, Nos. 1-2, Jan.-Feb., 2021. – pp. 27-44). - pp.20-36 DOI: 10.1007/s11106-021-00211-7
[12] GID. The personal pre and post processor developed by the International Center for Numerical Methods in Engineering (CIMNE, Barcelona, Spain). URL: https://www.gidsimulation.com/ (дата звернення 01.07.2024).
[13] SolidWorks. (Dassault Systèmes, France). URL: https://www.3ds.com/products-services/solidworks/ (дата звернення 01.07.2024).
[14] Abaqus. Unified FEA. (Dassault Systèmes, France). URL: https://www.3ds.com/products-services/simulia/products/abaqus/ (дата звернення 01.07.2024).
[15] LS-DYNA. (LST, USA). URL: https://www.lstc.com/ (дата звернення 28.06.2024).
[16] Kwon Y. S., Lee H. T., Kim K. T. Analysis for Cold Die Compaction of Stainless -Steel Powder. Journal of Engineering Materials and Technology, 1997. Vol. 119, Issue 4. P. 366 - 373.
[17] Fischmeister H. F., Arén B., Easterling K. E. Deformation and densification of porous preforms in hot forging. Powder metallurgy. 1971. Vol. 14, Issue 27. P. 144-163.
[18] Михайлов А.О., Штефан Є.В., Михайлов О.В. Моделювання процесів виготовлення тонкостінних втулок з поруватих заготовок з використанням прямого видавлювання та радіального ущільнення. Успіхи матеріалознавства. Київ: ІПМ ім. І. М. Францевича НАН України, 2023. № 7. C.19 - 26. DOI: 10.15407/materials2023.07.002
Published
Issue
Section
License
Copyright (c) 2025 Михайлов А. О., Штефан Є. В., Михайлов О. В., Штерн М. Б.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.