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MATHEMATICAL STUDY OF THE STABILITY OF FIXED POINTS OF SYSTEMS OF
DIFFERENTIAL EQUATIONS DESCRIBING BIOCHEMICAL PROCESSES RATES

Mathematical study of the stability of fixed points of systems of differential equations describing biochemical
processes rates is performed in the article. A system of differential equations for deviations is constructed, which describes the
behavior of the system near the fixed point. An analysis of the general solution of the system of differential equations
describing biochemical processes rates is made. The behavior of the systems near fixed points is investigated by the method of
small perturbations. The conditions of existence of the limit cycle of the system of differential equations are investigated. For
the cases when the system of differential equations cannot have an analytical solution, integrated curves are constructed by
qualitative research. Phase trajectories of the system of differential equations describing biochemical processes rates are
constructed. The definition of the nature of the stability of fixed points is considered and investigated.
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I'M. I'yoannb
MATEMATHUYHE JOCJIIKEHHSI CTIMKOCTI OCOBJIMBUX TOYOK CUCTEM
ANO®EPEHHIAJIBHUX PIBHSIHD, SIKI OITUCYIOTH HIBUJIKOCTI BIOXIMIYHUX
MNPOLIECIB

Y cmammi euxonano mamemamuune Oocnioxcenna cmiiikocmi 0coONUGUX MOYOK cucmem OughepenuyianvHux
PieHaAHb, AKI onucyioms weuokocmi Oioximiunux npovecis. Posznanymo i 00cnioxnceno usHauenna xapakmepy cmiilkocmi
0Co0UBUX MOUOK.

Knrouosi cnosa: xonyenmpayis pewosunu, cucmema Ou@eperyianbHux pieHAHb, SPDAHUYHUNT YUK

I'.H. I'y6ans
MATEMATHUYECKOE UCCJIEJOBAHUE YCTQﬁqHBOCTH OCOBBbIX TOYEK CUCTEM
JAUO®PEPEHIUAJBHBIX YPABHEHUU, OITUCBIBAIOLINX CKOPOCTH
BUOXUMUYECKUX TPOLHECCOB

B cmambve 6vinonneno - mamemamuueckoe  UCCAE006AHUE  YCHIOUYUGOCMU  O0COOBIX  IMOYEK  CUCHIEM
ougppepenyuanvuvix ypasHenuil, ORUCHIEAIOWUX CKOPOCMU Ouoxumuueckux npoueccos. Paccmompeno u uccnedoeano
onpedenenue XapaKkmepa ycmouuugocmu 0coosix mouex.

Kniouesnie cnoga: xonyenmpayus gewjecmea, cucmema ougp@epenyuanbHulx ypagHeHul, npeoenbHulil Yuki.

Problem formulation. Biochemical processes rates in their mathematical modeling are described
by the system of differential equations, which can be written in the form

d . . -
Cét(t)z f.(cCpreeCy)r I =L N, (1)

where C; — concentrations of substances in biochemical reactions; ¢; > 0.

The necessity and methods of reducing the number of equations to two or three differential
equations in the system (1) are investigated in the article [1].

For a mathematical study of the stability of fixed points, we consider a system of two differential
equations [2]:

%= fi(c,cy),

(2)
dc, (t
2 0c,).

Analysis of the latest research and publications. We consider how in the general case the
nature of the stability of a fixed point is determined.

In a mechanical system, it is necessary to make a slight push or shift from the equilibrium
position and see if the system returns to this equilibrium position. The same should be done in
mathematical modeling of dynamic systems [3]-[6].
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Presentation of the main material. Let C;,C, be the coordinates of a fixed point (equilibrium
position) of the system of differential equations (2). Let us define a small deviation Ac, [ T, Ac, [l T,
from the equilibrium position and substitute it into system of differential equations (2)
€, =G +Ac, C, =C, +AcC,. Then we decompose the right-hand sides of the differential equations of
the system (2) into Taylor series in the neighborhood of the point (C;;C,) (i.e. in the neighborhood of the

equilibrium position), limited (taking into account the smallness Ac,;, Ac, ) to the first terms of the series
(terms of the first degree):

f1(c,C) = f1(CL +ACy, Ty +AC)) = £1(C, 5) + A 8f1(801,02) +AC, 6f1(accl’C2) :
G (CHY) 2 (T:5)
“ (CHoY 2

(CHeY

Thus, in order to study the equilibrium position (the fixed point (C;;C,) ) of the non-linear system
of differential equations (2), we, at the point (C;;C,), located on the phase plane O'ciC,, placed the
origin O of the phase plane OAc,AC, (Fig. 1) and decomposed the functions f;(c;,C,) and f,(c;,C5)
into Taylor series in the neighborhood of the point (C;;C,) .

A
Ae, I
po N S - -
: O Ag
o' = -
: A A

Fig. 1. The fixed point (C;;C,)

Since the derivatives of constants d—Cl:O, %:o and Ac, Ac, are variables, i.e.

Ac; = A (t), Ac, = AC,(t), then left-hand sides of the differential equations of the system (2) take on
the form:

d(g(t) d(g+Ac(t) d(Ag())

dt dt dt
d(cp(t)) _d (T +Acy(1) _d(Acy(t)
dt dt dt

Since at the fixed (stationary) point (C;;C,) Z—? =0 and % =0, then from the system (2) we

obtain
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f,(¢,C)=0, f,(5,c;)=0.

Then, up to the terms of the second order of smallness, after substitution into the system of
differential equations (2), we obtain the system of differential equations

d(A
(d &) — A 8fl(aol’02) +AC, aflg"fpcz) |
t ! (CHY) C2 (@%2)
d(Ac,) of of ©)
= 2) _ aq, 2(801’02) +Ac, 2201’02) .
t ! (@%) C2 (€;%)
Denoting
of, (¢, c of,(c,,c of,(cy,C of, (¢,
1(aC1 2) —a, 12-‘; 2) oy, 2?1 2) 'y 2g3cl 2) ~ )
N CTS) 2 i) % e 2 @)
in the system of differential equations (3), we write the system (2) in the form
d(A d(A
d—cl = ( C-L) = C(lACl + azACZ, ﬂ = OclACl + azACZ,
dt dt or dt
dc, d(Ac d(Ac 4)
d_t2 = % = BIAC + SLAC, % = BIAC + o AC,.

This system of differential equations for deviations (perturbations) Ac;(t), Ac,(t) describes the

behavior of the system near the fixed point.
We find the general solution of the system of differential equations (4) in the form

Ac; = Aet, Ac, = BeX". (5)
Substituting (5) into (4), we obtain
Ake' = g Ae! + o, BeX,
{ Bke = B, A" + ,BeM
or reducing each equation of the system by the factor ekt , We obtain the system of algebraic equations
{Ak = oA+ a,B,
Bk = g,A+ f,B.
k=5

From the second equation of this system of algebraic equations we find A=B and

substitute it into the first equation, and reduce the obtained equation by the factor B, taking into account
that the amplitude B = O, we obtain the characteristic equation

(k—cq)(k=By) =y or k*—(ag+ o)k +aufy — =0, (6)

whence
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_ath i\/(“l +55)° ~ M, — 2 B1) -
2

kl, 2

(7)

2
_ o+ p i\/(al—ﬂz) +4o, _ o+ f +D
2 2 '
Then the general solution of the system of differential equations (4) can be written in the form

Ac, = Aeft + At Ac, = BeM! + B ek, (8)

where the amplitudes A, A, B,, B;, depend on the initial data.

The values k; and k, determine the nature of motion near the fixed point.

Consider combinations of values k; and K, .
1) Discriminant of the characteristic equation (6)

D = (g — 3,)? +4a, 3, > 0.

Then the two roots are valid. In this case, there may be three cases:
la. The roots k; and Kk, are negative. Then the solution (8) will be in the form of decreasing

exponents over time, that is the fixed point is stable. All phase trajectories tend to the fixed
point over time.

1b. The roots k; and k, are positive. Then the fixed point is unstable. The phase point from
arbitrary initial data moves away from the fixed point.

1c. The roots k; and k, have different signs, for example, k; >0 and k, <0. Then the
fixed point is unstable, since the term with a positive exponent will always prevail over time.
However, in some cases, when the initial data are such that Aj = B, =0, then Ac; and Ac,
will decrease over time, since from (8) we obtain

A(}l = A”ekzt, ACZ = B“ekzt.
Then
Ac, By

B
—2 =L or Ac, =L Ac,. 9)
Ag Ay ? Al a

The equation (9) is the equation if the straight line on the phase plane: along this straight line
the phase point goes to the fixed point O (Fig. 2).

Acyp
for B—H =)
Ag
Ag
for B—H =
Ap

Fig. 2. The fixed point O for k; >0, k, <0, A =B, =0

2) The discriminant of the characteristic equation (6) has the form
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D = (g - 3,)? +4a, 3, < 0.

Then from the system of differential equations (4) we obtain a differential equation of the
second order.

For this equation to be obtained, we differentiate one of two, for example, the first differential
equation of the system (4).

We substitute the right-hand side of the second differential equation of the system (4) for

d(Ac,)
dt

differential equation of the system (4), we substitute Ac, into the differentiated equation.
Thus, we obtain the differential equation of the second order:

2
d (A201)+2y0I (Acy)
dt dt

into the differentiated first differential equation and, finding Ac, form the first

+wiAc; =0, (10)
where constant values y and @y are expressed in terms of the coefficients «, 5 :

2y =—(an+B), @ =aufo— .

Then we write the characteristic equation (6) in the form

k2+2yk+a)g=0,

[2_ 2
Kio =—7E\r" —ap.

Consider the case with the negative discriminant of this characteristic equation, i.e. a)g > 7/2. In
this case, we obtain the complex-conjugate roots of this equation

whence

ko ==y Eijoy —y° = -y tio,

where @® = a)g —72.

Then we write the general solution of the differential equation (10) in the form
Acy(t) =e 7' (A cos wt + A, sin at). (11)

Note that equation (10) is a linear differential equation of motion (or the equation of a damped
harmonic oscillator). Its solution is characterized by trigonometric (or harmonic) oscillations, damping for
y > 0.

From the first differential equation of the system (4) we find Ac, :

d(a
%) 5 |

2%)

ACZ =

(12)

Differentiating the solution (11), we obtain

%:e_yt((a)AQ—)/AL)COSa)t—(a)P&ﬂ/AQ)Sin a)t). (13)
Substituting (13) and (11) into (12), we obtain
Ac, =g (a)AZ —H A s - AT G a)tj
x *3
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or
AC, (t) = e 77" (B, cos wt + B, sin wt), (14)

where

g O ra)A o oAGra)h

12%) 12%)

Thus, the general solution of the system of differential equations (4) consists of general solutions
(11) and (14) and has the form

Ac; (t) =e "' (A cos wt + A, sin at),

(15)
AC, (t) ="' (B, cos wt + B, sin at),
where @ circular frequency Ac;(t) and Ac,(t).
The graph of the function (11) is shown in Fig. 3 for y > 0.
Acy A
/e_ﬂ
s
o t
] 5

r="=
[

Fig. 3. The graph of the function (11) for » >0

The graph of the function (14) has a similar form.
From the general solution (15) we see that the nature of the stability of the fixed point depends
only on the value and sign of . Consider the following cases:

2a. y=0. Then Ac(t), Ac,(t) are harmonic functions of time, i.e. when defining the
initial deviations ACyg), ACyq) there are undamped oscillations with frequency @ in the

system. On the phase plane OAc;Ac,, different graphs (closed elliptical curves that are

nested) will correspond to different initial data. In this case, the fixed point (the origin O) is a
center, and the phase portrait consists of a continuum of concentric elliptical closed curves.
Repeated (periodic) motion occurs in the system.

We write the solution (15) for y =0:

Acy(t) = A cosat + A, sin at, (16)
AcC, (t) = B, cos wt + B, sin wt. (17)

Then (16) and (17) can be written in the form
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Acy (t) = A cosmt + A, sin ot = Acos(at + ¢y), (18)
AC,(t) = B, cos wt + B, sin wt = Bsin(wt + ¢,), (19)
where
¢ =arcty b , A= A ; (20)
A Cos ¢y
@, =arctg 5 : B=—_Bl : (21)
B, sin g,
Let us show how to obtain the equality (18). From the expressions (20) we have
tggol:—& or Sm—(ol:—&, A = Acosg,.
A Cos ¢y A
sing, A : - :
Then =— , whence A, =— Asingy. Substituting A and A, into (18), we
CoS ¢ Acos g,
obtain

Acy (t) = A(cos ¢ cos awt —sin ¢y sin wt ) = Acos(at + ¢y).
Similarly, we show how to obtain the equality (19). From the expressions (21) we have

B, sinp, B .
tgp=— or —==—, = Bsing,.
99, B, cosp, B, By @2
sing, Bsing,
COS @, B,
obtain

Then

, Whence B, =Bcos¢g,. Substituting B; and B, into (19), we

Acy (t) = B(sin ¢, cos awt +Cos ¢, sin wt) = Bsin(wt + ¢, ).
Consider the case when ¢; = @, = ¢. Then (18) and (19) can be written in the form
Ac (t) = Acos(wt + @), (22)
AC, (t) = Bsin(at + ¢). (23)
In this case, the phase trajectories are a family of concentric ellipses with the center at the

fixed point O (the phase portrait of the system has the form of the continuum of concentric
ellipses — Fig. 4):

2 2
(Aa®)”  (Ae®)” _
A2 B2
There is periodic motion in the system. Each point (except for the point O) is passed in time
T= il again. The coordinates are periodic on t with the period T and are determined by the
w

formulas (22) and (23). The center (the fixed point O) is a stable equilibrium position of the
system (2).
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SN

Note that, for example, when A >0, B >0, » =0 with increasing t from t=0 to t=

Ac, (t) = Acos(wt + ) decreases, and AC,(t) = Bsin(wt +¢) increases. This makes it
possible to determine the direction of all trajectories (see quadrant | of Fig. 4).

Acyp

I |

= :\\ Ll
\Qﬂ Acy

II v

Fig. 4. The phase portrait of the system for ¢, = ¢, = ¢.

2b. ¥ < 0. Then the presence of the factor e ' in the solution (15), which e ' 50 as
t — oo, leads to the family of spirals that unwind from around the point O, not intersecting,
on the phase plane OAC;AC,. In this case, the fixed point (the point O) is an unstable focus,
and the phase portrait consists of repelling spirals.

2c. ¥ >0. Then the presence of the factor e”" in the solution (15), which e 50 as

t — o0, leads to the representation of deviations Ac;(t) — 0, Ac,(t) — 0 in the form of
damped oscillations. That is, the system performs damping, free (no external influence)
oscillations. On the phase plane OAC/AC,, the graphs are the family of twisting spirals

tending to point O. In this case, the fixed point O is a stable focus, and the phase portrait
consists of attracting spirals.
The circular frequency @ of rotation of a point in a spiral is inversely proportional to the period

of one rotation of a point in a spiral: @ = ?ﬂ and the value y shows how quickly the spiral unwinds or

twists.

Thus, from points 2b, 2c, taking into account point 2a, it follows that the transition » through
zero for the solution (15) causes bifurcation of the entire phase portrait, i.e. its qualitative change.

Therefore, due to the method of small perturbations it is possible to define the nature of the
stability of fixed points, i.e. to investigate the behavior of the system near fixed points.

It is also very important to know how systems behave far away from fixed points.

If time t — oo, then in the case of unstable nodes or foci, the phase point over time t moves away
from a fixed point far enough, where it is no longer possible to use linearized systems of equations, which

we obtain assuming small deviations Ac; and AC, . Therefore, the study of the behavior of the system far

from the fixed point is carried out by geometric construction of integral curves.

In practice, no real value, including the concentration of a chemical substance, can grow
indefinitely. At some point in the system itself there will be conditions that limit the growth of these
values. However, systems of differential equations of type (1) can have stable fixed points at infinity. This
happens when some important limitation is not taken into account.

Note that trajectories can proceed from an unstable fixed point when the initial conditions
correspond to the equilibrium position (the point O)

Obviously, the trajectories that emerge from an unstable fixed point must go somewhere:

a) There is a stable position of equilibrium, to which all trajectories tend, near the unstable one;

b) There is no stable point nearby, but the trajectories do not go to infinity.
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In this case, there is at least one closed phase curve, to which the phase trajectories should go in
the limit. This curve is the limit cycle.

A limit cycle is the only closed orbit that is in a ring neighborhood (in a three-dimensional one, in
a tubular neighborhood), that is, if there is a ring neighborhood that does not contain other closed
trajectories except for the limit cycle. Thus, the limit cycle is isolated from all other closed trajectories.
The sufficient condition for the existence of the limit cycle of the system (2) is the principle of the ring: if
aring

RZ <(c;—8)% +(c, —5,)? <RZ,

can be found on the phase plane O’c;C, such that all system trajectories that begin at the boundary of this

ring enter inside the ring or all of them exit it simultaneously, then there is a limit cycle inside the ring.

If the trajectories are wound on the limit cycle on two sides as t — oo, then the limit cycle is
stable (attractive) or attractor.

If the trajectories are spirals that move away from the limit cycle on two sides as t — oo, then the
limit cycle is unstable (repulsive) or repellent.

If the trajectories on one side are wound on the limit cycle as t — oo and move away from it on
the other side as t — oo, then the limit cycle is semi-stable.

Thus, the phase portrait, which, for example, contains a stable limit cycle is characterized by the
presence of an annular neighborhood such that all trajectories that cross the boundary of this
neighborhood, go to the limit cycle as t — 0.

The system may not have limit cycles.

Limit cycles do not always look like a circle.

Limit cycles can often be detected by passing to polar coordinates.

There may be more than one limit cycle. It depends on the complexity of the nonlinear functions

fl(C_IJCZ)I fZ(c_]_:CZ)-
Since the limit trajectory is closed, it must be a periodic motion. We can consider three-
dimensional space OAC;AC,t, in which the projection of motion on the phase plane OAc,Ac, is a phase

trajectory, and projections on the planes OAc;t and OAC,t are the sweeps of the process in time.

Then the limit with a phase trajectory winding on it is constructed. The motion of the phase point
in the cycle corresponds to the oscillations Ac;(t) and Ac,(t) with constant amplitudes, which are set
approximately in the second period after the start of motion.

The stability of the amplitude of oscillations ensures the stability of the limit cycle, which is the
self-oscillating mode, i.e. oscillations occur without periodic external influences and can be maintained
for as long as possible, but with an energy source such as sunlight for photosynthesis. However, in this
example, the behavior of the system near the fixed point of the center type differs significantly from self-
oscillations. In the example given, the projection of the motion of the phase point on the phase plane

OAc;Ac, although passing along closed curves, however, the amplitude of oscillations depends
significantly on the initial conditions AC;p), ACy) and is unstable to small perturbations. That is, after

any small perturbation, the phase point begins to move along a new curve closed in the projection on the
phase plane OACAC,.

Construction of the phase portrait of the system of differential equations (2) can be quite a
difficult problem since in the general case the differential equation [2]
de, _ f5(G,C,)
dcl fl(c_l_!CZ)
obtained from the system of differential equations (2) may not have an analytical solution. Then the

construction of integral curves should be done by qualitative research. For this we can use the method of
isoclines. Isocline lines on the phase plane intersect with all integral curves at the same angle with the x-

(24)

axis, i.e. putting 3& =k =const in the equation (24), we obtain
G

© H.M. Hubal



38 Mincsy3ziecoruii 30iprux « HAYKOBI HOTATKHy. Jlyyvk, 2022, Ne73

fo(cy,
fy(c,cp) =kfi(c,cp) or fl(%cz):% (25)

is an equation of the isocline family.

: L o : : . dc
We obtain the main isoclines (isoclines of horizontal and vertical tangent lines) for k = d—2 =0
G

and k zzﬁ — 00, Then, respectively, the equations of these isoclines according to the formulas (25)
G

have the form:
fy(c,¢,) =0, (26)
fi(c,¢3) =0, (27)

where (26) is the isocline equation at the points of which the integral curves have horizontal tangent lines;
(27) is the isocline equation at the points of which the integral curves have vertical tangent lines.

If we draw the straight line, through each point (c;;c,) € D, that the tangent of the angle of

inclination to the axis O'c; is equal to the right-hand part of the differential equation (24), then we obtain
the family of straight lines that is the field of directions of the differential equation (24). The direction of
the field at each point (C;;C,) € D is represented by a small segment of the straight line corresponding to

this point. The center of each segment is selected at the point (c;;C,). At each point of the isocline, the
direction of the field is the same.

There are fixed points of the system of differential equations (2) at the intersection of the curves
(26) and (27). We construct curves of isoclines (26) and (27) on the phase plane O’ciC, . In Fig. 5, the

direction of the field at the points lying on the isoclines f;(c;,c,) =0 and f,(c;,c,) =0 is depicted by

vertical and horizontal small segments, respectively (by linear elements of straight lines). At the points of
the isocline (26), tangent lines to the integral curves are parallel to the axes of the abscissa, and at the
points of the isocline (27), tangent lines to the integral curves are parallel to the axes of the ordinates.
Using isoclines, we approximately construct curves that at each of their points touch the direction of the

field at this point (in this case, there are only points of two isoclines f;(c;,c,) =0 and f,(c;,C,) =0).

These curves are the integral curves C, =C,(¢;,C) of the differential equation (24) and the phase

trajectories of the system of differential equations (2). Having constructed several isoclines (in this case,
two isoclines (26) and (27)), and the field of directions on these isoclines, we approximately depict the
integral curves of the differential equation (24), which coincide with the phase trajectories of the system
of differential equations (2). For example, in Fig. 5, we see that under some conditions, depending on the

type of functions f;(c;,C5), f,(Cc,Cy) and their arguments ¢, (t), c,(t), the phase trajectories of the

system of differential equations (2) go from the neighborhood of the fixed point (C;;C,) (equilibrium

position) in spirals, i.e. the phase curves are spirals that spin from the neighborhood of the fixed point.
Note that the direction of motion can be determined, for example, as follows. Consider in Fig.5

part of the phase plane O’c,C,, where indicated k :dﬁ > 0. Obviously, if in the specified part of the

de;
de,
phase plane O'c;c, dﬁ >0 and d—cl >0 (then k >0, since dt _ d& > 0), then we put the arrow
dt dt dg  de
dt

in the direction around the fixed point (Fig. 5). If the conditions dditz <0 and CL—? <0 were satisfied,

then the condition k >0 would also be satisfied, but the arrow would be placed in the direction of the
fixed point. In this case, the phase trajectories of the system of differential equations (2) would go to (into
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the neighborhood of) the fixed point (C;;C,) (the equilibrium position) on the spirals, i.e. spirals, that are
wound on the fixed point (C;;T,), would be the phase curves.

c o
il fi(e.¢5)=0 for k > o
de
G - \ de,
E fz(cbcz):o for F=0
o L -
O 3 5

Fig. 5. The phase trajectories of the system (2)

Conclusions. Mathematical study of the stability of fixed points of systems of differential
equations describing biochemical processes rates is performed in the article. The definition of the nature
of the stability of fixed points is considered and investigated.
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