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MATHEMATICAL STUDY OF THE STABILITY OF FIXED POINTS OF SYSTEMS OF 

DIFFERENTIAL EQUATIONS DESCRIBING BIOCHEMICAL PROCESSES RATES 

  
Mathematical study of the stability of fixed points of systems of differential equations describing biochemical 

processes rates is performed in the article. A system of differential equations for deviations is constructed, which describes the 

behavior of the system near the fixed point. An analysis of the general solution of the system of differential equations 

describing biochemical processes rates is made. The behavior of the systems near fixed points is investigated by the method of 

small perturbations. The conditions of existence of the limit cycle of the system of differential equations are investigated. For 

the cases when the system of differential equations cannot have an analytical solution, integrated curves are constructed by 

qualitative research. Phase trajectories of the system of differential equations describing biochemical processes rates are 

constructed. The definition of the nature of the stability of fixed points is considered and investigated. 

Keywords: concentration of substance, system of differential equations, limit cycle. 
 

Г.М. Губаль 

МАТЕМАТИЧНЕ ДОСЛІДЖЕННЯ СТІЙКОСТІ ОСОБЛИВИХ ТОЧОК СИСТЕМ 

ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ, ЯКІ ОПИСУЮТЬ ШВИДКОСТІ  БІОХІМІЧНИХ 

ПРОЦЕСІВ 
 

У статті виконано математичне дослідження стійкості особливих точок систем диференціальних 

рівнянь, які описують швидкості  біохімічних процесів. Розглянуто і досліджено визначення характеру стійкості 

особливих точок. 

Ключові слова: концентрація речовини, система диференціальних рівнянь, граничний цикл. 
 

Г.Н. Губаль 

МАТЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ОСОБЫХ ТОЧЕК СИСТЕМ 

ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ОПИСЫВАЮЩИХ СКОРОСТИ 

БИОХИМИЧЕСКИХ ПРОЦЕССОВ 
 

В статье выполнено математическое исследование устойчивости особых точек систем 

дифференциальных уравнений, описывающих скорости биохимических процессов. Рассмотрено и исследовано 

определение характера устойчивости особых точек. 

Ключевые слова: концентрация вещества, система дифференциальных уравнений, предельный цикл. 
 

Problem formulation. Biochemical processes rates in their mathematical modeling are described 

by the system of differential equations, which can be written in the form 

 1 2

( )
( , , , ), 1, ,i

i N

dc t
f c c c i N

dt
   (1) 

where ic  – concentrations of substances in biochemical reactions; 0ic  .  

The necessity and methods of reducing the number of equations to two or three differential 

equations in the system (1) are investigated in the article [1].  

For a mathematical study of the stability of fixed points, we consider a system of two differential 

equations [2]: 

 

1
1 1 2

2
2 1 2

( )
( , ),

( )
( , ).

dc t
f c c

dt

dc t
f c c

dt





 


 
(2) 

Analysis of the latest research and publications. We consider how in the general case the 

nature of the stability of a fixed point is determined.  

In a mechanical system, it is necessary to make a slight push or shift from the equilibrium 

position and see if the system returns to this equilibrium position. The same should be done in 

mathematical modeling of dynamic systems [3]-[6]. 
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Presentation of the main material. Let 1 2,c c
 
 be the  coordinates of a fixed point (equilibrium 

position) of the system of differential equations (2). Let us define a small deviation 1 1 2 2,c c c c   

from the equilibrium position and substitute it into system of differential equations (2) 

1 1 1 2 2 2,c c c c c c      . Then we decompose the right-hand sides of the differential equations of 

the system (2) into Taylor series in the neighborhood of the point 1 2( ; )c c  (i.e. in the neighborhood of the 

equilibrium position), limited (taking into account the smallness
 

1 2,c c  ) to the first terms of the series 

(terms of the first degree): 

1 2 1 2

1 2 1 2

1 1 2 1 1 2
1 1 2 1 1 1 2 2 1 1 2 1 2

1 2( ; ) ( ; )

2 1 2 2 1 2
2 1 2 2 1 1 2 2 2 1 2 1 2

1 2( ; ) ( ; )

( , ) ( , )
( , ) ( , ) ( , ) ,

( , ) ( , )
( , ) ( , ) ( , ) .

c c c c

c c c c

f c c f c c
f c c f c c c c f c c c c

c c

f c c f c c
f c c f c c c c f c c c c

c c

 
          

 

 
          

 

 

Thus, in order to study the equilibrium position (the fixed point 1 2( ; )c c ) of the non-linear system 

of differential equations (2), we, at the point 1 2( ; )c c , located on the phase plane 1 2O c c , placed the 

origin O of the phase plane 1 2O c c   (Fig. 1) and decomposed the functions 1 1 2( , )f c c  and 2 1 2( , )f c c  

into Taylor series in the neighborhood of the point 1 2( ; )c c . 

 

 
Fig. 1. The fixed point 1 2( ; )c c  

 

Since the  derivatives of constants 1 0,
dc

dt
  2 0

dc

dt
  and 1 2,c c    are variables, i.e. 

1 1 2 2( ), ( )c c t c c t      , then left-hand sides of the differential equations of the system (2) take on 

the form: 

     

     

1 1 1 1

2 2 2 2

( ) ( ) ( )
,

( ) ( ) ( )
.

d c t d c c t d c t

dt dt dt

d c t d c c t d c t

dt dt dt

  
 

  
 

 

Since at the fixed (stationary) point 1 2( ; )c c
 

1 0
dc

dt
  and 2 0

dc

dt
 , then from the system (2) we 

obtain 
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1 1 2 2 1 2( , ) 0, ( , ) 0.f c c f c c   

Then, up to the terms of the second order of smallness, after substitution into the system of 

differential equations (2), we obtain the system of differential equations  
 

 

 

 

1 2 1 2

1 2 1 2

1 1 1 2 1 1 2
1 2

1 2( ; ) ( ; )

2 2 1 2 2 1 2
1 2

1 2( ; ) ( ; )

( , ) ( , )
,

( , ) ( , )
.

c c c c

c c c c

d c f c c f c c
c c

dt c c

d c f c c f c c
c c

dt c c

   
   

 




      
  


 (3)
 

Denoting  

1 2 1 2 1 2 1 2

1 1 2 1 1 2 2 1 2 2 1 2
1 2 1 2

1 2 1 2( ; ) ( ; ) ( ; ) ( ; )

( , ) ( , ) ( , ) ( , )
, , , ,

c c c c c c c c

f c c f c c f c c f c c

c c c c
   

   
   

   
 

in the system of differential equations (3), we write the system (2) in the form 

                

 

 

11
1 1 2 2

22
1 1 2 2

,
d cdc

c c
dt dt

d cdc
c c

dt dt

 

 


    




     


     
or

     

 

 

1
1 1 2 2

2
1 1 2 2

,

.

d c
c c

dt

d c
c c

dt

 

 


   




    


 (4) 

This system of differential equations for deviations (perturbations) 1 2( ), ( )c t c t   describes the 

behavior of the system near the fixed point. 

We find the general solution of the system of differential equations (4) in the form 

 1 2, .kt ktc Ae c Be     (5) 

Substituting (5) into (4), we obtain 

1 2

1 2

,kt kt kt

kt kt kt

Ake Ae Be

Bke Ae Be

 

 

  


 

 

or reducing each equation of the system by the factor 
kte , we obtain the system of algebraic equations 

1 2

1 2

,

.

Ak A B

Bk A B

 

 

 


 
 

From the second equation of this system of algebraic equations we find 2

1

k
A B






  and 

substitute it into the first equation, and reduce the obtained equation by the factor B, taking into account 

that the amplitude 0B  , we obtain the characteristic equation 

 1 2 2 1( )( )k k        or  
2

1 2 1 2 2 1( ) 0,k k           (6) 

whence 
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2
1 2 1 2 1 2 2 1

1,2

2
1 2 1 2 2 1 1 2

( ) 4( )

2

( ) 4
.

2 2

k

D

       

       

    
 

     
 

 (7) 

Then the general solution of the system of differential equations (4) can be written in the form 

 1 2 1 2
1 I II 2 I II, ,

k t k t k t k t
c A e A e c B e B e       (8) 

where the amplitudes I II I II, , ,A A B B  depend on the initial data. 

The values 1k  and 2k  determine the nature of motion near the fixed point. 

Consider combinations of values 1k  and 2k . 

1)  Discriminant of the characteristic equation (6)  

2
1 2 2 1( ) 4 0.D          

Then the two roots are valid. In this case, there may be three cases: 

1a. The roots 1k  and 2k  are negative. Then the solution (8) will be in the form of decreasing 

exponents over time, that is the fixed point is stable. All phase trajectories tend to the fixed 

point over time.  

1b. The roots 1k  and 2k  are positive. Then the fixed point is unstable. The phase point from 

arbitrary initial data moves away from the fixed point. 

1c. The roots 1k  and 2k  have different signs, for example, 1 0k   and 2 0k  . Then the 

fixed point is unstable, since the term with a positive exponent will always prevail over time. 

However, in some cases, when the initial data are such that I I 0A B  , then 1c  and 2c  

will decrease over time, since from (8) we obtain 

2 2
1 II 2 II, .

k t k t
c A e c B e     

Then 

 2 II

1 II

c B

c A





 or II

2 1
II

.
B

c c
A

    (9) 

The equation (9) is the equation if the straight line on the phase plane: along this straight line 

the phase point goes to the fixed point O (Fig. 2). 

 
 

Fig. 2. The fixed point O for 1 0k  , 2 0k  , I I 0A B   

 

2)  The discriminant of the characteristic equation (6) has the form 
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2
1 2 2 1( ) 4 0.D          

Then from the system of differential equations (4) we obtain a differential equation of the 

second order.  

For this equation to be obtained, we differentiate one of two, for example, the first differential 

equation of the system (4).  

We substitute the right-hand side of the second differential equation of the system (4) for 

 2d c

dt



 
into the differentiated first differential equation and, finding 2c  form the first 

differential equation of the system (4), we substitute 2c  into the differentiated equation. 

Thus, we obtain the differential equation of the second order: 

 

   2
1 1 2

0 12
2 0,

d c d c
c

dtdt
 

 
   

  
(10) 

where constant values   and 0  are expressed in terms of the coefficients ,  : 

2
1 2 0 1 2 2 12 ( ), .             

Then we write the characteristic equation (6) in the form 

2 2
02 0,k k     

whence  

2 2
1,2 0 .k        

Consider the case with the negative discriminant of this characteristic equation, i.e. 
2 2
0 .   In 

this case, we obtain the complex-conjugate roots of this equation  

2 2
1,2 0 ,k i i            

where 
2 2 2

0 .      

Then we write the general solution of the differential equation (10) in the form 

 1 1 2( ) ( cos sin ).tc t e A t A t      (11) 

Note that equation (10) is a linear differential equation of motion (or the equation of a damped 

harmonic oscillator). Its solution is characterized by trigonometric (or harmonic) oscillations, damping for  

0.   

From the first differential equation of the system (4) we find 2c : 

 

1
1 1

2
2

( )

.

d c
c

dtc






 

   (12) 

Differentiating the solution (11), we obtain 

  1
2 1 1 2

( )
( )cos ( )sin .td c

e A A t A A t
dt

      
     (13) 

Substituting (13) and (11) into (12), we obtain 

2 1 1 1 1 2
2

2 2

( ) ( )
cos sint A A A A

c e t t      
 

 

     
   

 
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or 

 2 1 2( ) ( cos sin ),tc t e B t B t      (14) 

where 

2 1 1 1 1 2
1 2

2 2

( ) ( )
, .

A A A A
B B

     

 

   
    

Thus, the general solution of the system of differential equations (4) consists of general solutions 

(11) and (14) and has the form 

 
1 1 2

2 1 2

( ) ( cos sin ),

( ) ( cos sin ),

t

t

c t e A t A t

c t e B t B t





 

 





  

  
 (15) 

where   circular frequency 1( )c t  and 2 ( )c t . 

The graph of the function (11) is shown in Fig. 3 for 0  . 

 
Fig. 3. The graph of the function (11) for 0   

 

The graph of the function (14) has a similar form. 

From the general solution (15) we see that the nature of the stability of the fixed point depends 

only on the value and sign of  . Consider the following cases: 

2а. 0  . Then 1 2( ), ( )c t c t   are harmonic functions of time, i.e. when defining the 

initial deviations 1(0) 2(0),c c   there are undamped oscillations with frequency   in the 

system. On the phase plane 1 2O c c  , different graphs (closed elliptical curves that are 

nested) will correspond to different initial data. In this case, the fixed point (the origin O) is a 

center, and the phase portrait consists of a continuum of concentric elliptical closed curves. 

Repeated (periodic) motion occurs in the system. 

We write the solution (15) for 0  : 

 1 1 2( ) cos sin ,c t A t A t     (16) 

 2 1 2( ) cos sin .c t B t B t     (17) 

Then (16) and (17) can be written in the form 



 

Міжвузівський збірник «НАУКОВІ НОТАТКИ». Луцьк, 2022, №73 

_________________________________________________________________________________ 

© H.M. Hubal 

35 

 1 1 2 1( ) cos sin cos( ),c t A t A t A t         (18) 

 2 1 2 2( ) cos sin sin( ),c t B t B t B t         (19) 

where  

 2 1
1

1 1

arctg , ;
cos

A A
A

A




 
   

 
 (20) 

 1 1
2

2 2

arctg , .
sin

B B
B

B




 
  

 
 (21) 

Let us show how to obtain the equality (18). From the expressions (20) we have  

2
1

1

tg
A

A
       or    1 2

1 1
1 1

sin
, cos .

cos

A
A A

A





    

Then 1 2

1 1

sin
,

cos cos

A

A



 
   whence 2 1sin .A A    Substituting 1A  and 2A  into (18), we 

obtain 

 1 1 1 1( ) cos cos sin sin cos( ).c t A t t A t           

Similarly, we show how to obtain the equality (19). From the expressions (21) we have 

1
2

2

tg
B

B
      or    2 1

1 2
2 2

sin
, sin .

cos

B
B B

B





   

Then 2 2

2 2

sin sin
,

cos

B

B

 


  whence 2 2cos .B B   Substituting 1B  and 2B  into (19), we 

obtain 

 2 2 2 2( ) sin cos cos sin sin( ).c t B t t B t           

Consider the case when 1 2 .     Then (18) and (19) can be written in the form 

 1( ) cos( ),c t A t     (22) 

 2 ( ) sin( ).c t B t     (23) 

In this case, the phase trajectories are a family of concentric ellipses with the center at the 

fixed point O (the phase portrait of the system has the form of the continuum of concentric 

ellipses – Fig. 4): 

   
2 2

1 2

2 2

( ) ( )
1.

c t c t

A B

 
   

There is periodic motion in the system. Each point (except for the point O) is passed in time 

2
T




  again. The coordinates are periodic on t with the period T and are determined by the 

formulas (22) and (23). The center (the fixed point O) is a stable equilibrium position of the 

system (2). 
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Note that, for example, when 0, 0, 0A B     with increasing t from 0t   to 2t




  

1( ) cos( )c t A t     decreases, and 2 ( ) sin( )c t B t     increases. This makes it 

possible to determine the direction of all trajectories (see quadrant I of Fig. 4).  

 
Fig. 4. The phase portrait of the system for 1 2 .     

 

2b. 0  . Then the presence of the factor 
te 
 in the solution (15), which 

te    as 

t  , leads to the family of spirals that unwind from around the point O, not intersecting, 

on the phase plane 1 2O c c  . In this case, the fixed point (the point O) is an unstable focus, 

and the phase portrait consists of repelling spirals.  

2c. 0  . Then the presence of the factor 
te 
 in the solution (15), which 0te    as 

t  , leads to the representation of deviations 1 2( ) 0, ( ) 0c t c t     in the form of 

damped oscillations. That is, the system performs damping, free (no external influence) 

oscillations. On the phase plane 1 2O c c  , the graphs are the family of twisting spirals 

tending to point O. In this case, the fixed point O is a stable focus, and the phase portrait 

consists of attracting spirals. 

The circular frequency   of rotation of a point in a spiral is inversely proportional to the period 

of one rotation of a point in a spiral: 
2

,
T


   and the value   shows how quickly the spiral unwinds or 

twists. 

Thus, from points 2b, 2c, taking into account point 2a, it follows that the transition   through 

zero for the solution (15) causes bifurcation of the entire phase portrait, i.e. its qualitative change. 

Therefore, due to the method of small perturbations it is possible to define the nature of the 

stability of fixed points, i.e. to investigate the behavior of the system near fixed points.  

It is also very important to know how systems behave far away from fixed points. 

If time t  , then in the case of unstable nodes or foci, the phase point over time t moves away 

from a fixed point far enough, where it is no longer possible to use linearized systems of equations, which 

we obtain assuming small deviations 1c  and 2c . Therefore, the study of the behavior of the system far 

from the fixed point is carried out by geometric construction of integral curves. 

In practice, no real value, including the concentration of a chemical substance, can grow 

indefinitely. At some point in the system itself there will be conditions that limit the growth of these 

values. However, systems of differential equations of type (1) can have stable fixed points at infinity. This 

happens when some important limitation is not taken into account. 

Note that trajectories can proceed from an unstable fixed point when the initial conditions 

correspond to the equilibrium position (the point O) 

Obviously, the trajectories that emerge from an unstable fixed point must go somewhere: 

а) There is a stable position of equilibrium, to which all trajectories tend, near the unstable one; 

b) There is no stable point nearby, but the trajectories do not go to infinity. 
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In this case, there is at least one closed phase curve, to which the phase trajectories should go in 

the limit. This curve is the limit cycle. 

A limit cycle is the only closed orbit that is in a ring neighborhood (in a three-dimensional one, in 

a tubular neighborhood), that is, if there is a ring neighborhood that does not contain other closed 

trajectories except for the limit cycle. Thus, the limit cycle is isolated from all other closed trajectories. 

The sufficient condition for the existence of the limit cycle of the system (2) is the principle of the ring: if 

a ring  

2 2 2 2
1 1 1 2 2 2( ) ( )R c c c c R     , 

can be found on the phase plane 1 2O c c  such that all system trajectories that begin at the boundary of this 

ring enter inside the ring or all of them exit it simultaneously, then there is a limit cycle inside the ring. 

If the trajectories are wound on the limit cycle on two sides as t  , then the limit cycle is 

stable (attractive) or attractor. 

If the trajectories are spirals that move away from the limit cycle on two sides as t  , then the 

limit cycle is unstable (repulsive) or repellent. 

If the trajectories on one side are wound on the limit cycle as t   and move away from it on 

the other side as t  , then the limit cycle is semi-stable.  

Thus, the phase portrait, which, for example, contains a stable limit cycle is characterized by the 

presence of an annular neighborhood such that all trajectories that cross the boundary of this 

neighborhood, go to the limit cycle as t  . 

The system may not have limit cycles. 

Limit cycles do not always look like a circle. 

Limit cycles can often be detected by passing to polar coordinates. 

There may be more than one limit cycle. It depends on the complexity of the nonlinear functions 

1 1 2 2 1 2( , ), ( , )f c c f c c .  

Since the limit trajectory is closed, it must be a periodic motion. We can consider three-

dimensional space 1 2O c c t  , in which the projection of motion on the phase plane 1 2O c c   is a phase 

trajectory, and projections on the planes 1O c t  and 2O c t  are the sweeps of the process in time. 

Then the limit with a phase trajectory winding on it is constructed. The motion of the phase point 

in the cycle corresponds to the oscillations 1( )c t  and 2 ( )c t  with constant amplitudes, which are set 

approximately in the second period after the start of motion. 

The stability of the amplitude of oscillations ensures the stability of the limit cycle, which is the 

self-oscillating mode, i.e. oscillations occur without periodic external influences and can be maintained 

for as long as possible, but with an energy source such as sunlight for photosynthesis. However, in this 

example, the behavior of the system near the fixed point of the center type differs significantly from self-

oscillations. In the example given, the projection of the motion of the phase point on the phase plane 

1 2O c c   although passing along closed curves, however, the amplitude of oscillations depends 

significantly on the initial conditions 1(0) 2(0),c c   and is unstable to small perturbations. That is, after 

any small perturbation, the phase point begins to move along a new curve closed in the projection on the 

phase plane 1 2O c c  .  

Construction of the phase portrait of the system of differential equations (2) can be quite a 

difficult problem since in the general case the differential equation [2] 

 2 2 1 2

1 1 1 2

( , )
,

( , )

dc f c c

dc f c c
  (24) 

obtained from the system of differential equations (2) may not have an analytical solution. Then the 

construction of integral curves should be done by qualitative research. For this we can use the method of 

isoclines. Isocline lines on the phase plane intersect with all integral curves at the same angle with the x-

axis, i.e. putting 2

1

const
dc

k
dc

   in the equation (24), we obtain 
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 2 1 2 1 1 2( , ) ( , )f c c kf c c     or    2 1 2
1 1 2

( , )
( , )

f c c
f c c

k
  (25) 

is an equation of the isocline family. 

We obtain the main isoclines (isoclines of horizontal and vertical tangent lines) for 2

1

0
dc

k
dc

   

and 2

1

dc
k

dc
  . Then, respectively, the equations of these isoclines according to the formulas (25) 

have the form: 

  2 1 2( , ) 0,f c c   (26) 

 1 1 2( , ) 0,f c c    (27) 

where (26) is the isocline equation at the points of which the integral curves have horizontal tangent lines;  

(27) is the isocline equation at the points of which the integral curves have vertical tangent lines.  

If we draw the straight line, through each point 1 2( ; )c c D , that the tangent of the angle of 

inclination to the axis 1O c  is equal to the right-hand part of the differential equation (24), then we obtain 

the family of straight lines that is the field of directions of the differential equation (24). The direction of 

the field at each point 1 2( ; )c c D  is represented by a small segment of the straight line corresponding to 

this point. The center of each segment is selected at the point 1 2( ; )c c . At each point of the isocline, the 

direction of the field is the same. 

There are fixed points of the system of differential equations (2) at the intersection of the curves 

(26) and (27). We construct curves of isoclines (26) and (27) on the phase plane 1 2O c c . In Fig. 5, the 

direction of the field at the points lying on the isoclines 1 1 2( , ) 0f c c   and 2 1 2( , ) 0f c c   is depicted by 

vertical and horizontal small segments, respectively (by linear elements of straight lines). At the points of 

the isocline (26), tangent lines to the integral curves are parallel to the axes of the abscissa, and at the 

points of the isocline (27), tangent lines to the integral curves are parallel to the axes of the ordinates. 

Using isoclines, we approximately construct curves that at each of their points touch the direction of the 

field at this point (in this case, there are only points of two isoclines 1 1 2( , ) 0f c c   and 2 1 2( , ) 0f c c  ). 

These curves are the integral curves 2 2 1( , )c c c C  of the differential equation (24) and the phase 

trajectories of the system of differential equations (2). Having constructed several isoclines (in this case, 

two isoclines (26) and (27)), and the field of directions on these isoclines, we approximately  depict the 

integral curves of the differential equation (24), which coincide with the phase trajectories of the system 

of differential equations (2). For example, in Fig. 5, we see that under some conditions, depending on the 

type of functions 1 1 2( , )f c c , 2 1 2( , )f c c  and their arguments 1 2( ), ( )c t c t , the phase trajectories of the 

system of differential equations (2) go from the neighborhood of the fixed point 1 2( ; )c c  (equilibrium 

position) in spirals, i.e. the phase curves are spirals that spin from the neighborhood of the fixed point. 

Note that the direction of motion can be determined, for example, as follows. Consider in Fig.5 

part of the phase plane 1 2O c c , where indicated 2

1

0
dc

k
dc

  . Obviously, if in the specified part of the 

phase plane 1 2O c c      2 0
dc

dt
  and 1 0

dc

dt
  (then 0k  , since 

2

2

1 1

0

dc

dcdt
dc dc

dt

  ), then we put the arrow 

in the direction around the fixed point (Fig. 5). If the conditions 2 0
dc

dt
  and 1 0

dc

dt
  were satisfied, 

then the condition 0k   would also be satisfied, but the arrow would be placed in the direction of the 

fixed point. In this case, the phase trajectories of the system of differential equations (2) would go to (into 
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the neighborhood of) the fixed point 1 2( ; )c c  (the equilibrium position) on the spirals, i.e. spirals, that are 

wound on the fixed point 1 2( ; )c c , would be the phase curves.  

 
Fig. 5. The phase trajectories of the system (2) 

 

Conclusions. Mathematical study of the stability of fixed points of systems of differential 

equations describing biochemical processes rates is performed in the article. The definition of the nature 

of the stability of fixed points is considered and investigated. 
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