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MATHEMATICAL ANALYSIS OF QUALITATIVE CHARACTERISTICS OF SOLUTIONS OF
SYSTEMS OF DIFFERENTIAL EQUATIONS DESCRIBING BIOCHEMICAL PROCESSES
RATES

The article considers mathematical modeling of biochemical processes rates in biological systems. It is given the
system of differential equations which, in the general case, describes biochemical processes rates. It is noticed in which cases
the system of differential equations can be solved analytically and when the exact solution can be obtained. It is shown the
importance of qualitative characteristics to predict changes in the nature of the system behavior when conditions change. It is
analyzed how the state of the system is represented at an arbitrary moment of time. It is shown that qualitative analysis makes
it possible to determine the nature the solution of the system of differential equations by the form of phase trajectories. It is
shown how the change in the state of the system over time is described by the evolution operator. Mathematical analysis of
qualitative characteristics of solutions of systems of differential equations describing biochemical processes rates is performed
in the article. Examples of phase portraits are considered and investigated.
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I''M. I'y6aan
MATEMATHAYHUI AHAJI3 SIKICHUX XAPAKTEPUCTHUK PO3B’SI3KIB CUCTEM
JAUOEPEHIIAJBHUX PIBHSHDB, SAKI OIIUCYIOTH HIBUJIKOCTI BIOXIMIYHUX
IMPOLECIB

Y cmammi eukonano mamemamuynuil ananiz AKICHUX XAPAKMEPUCMUK PO36°A3Ki6 cucmem oOughepeHuianbHux
Ppienans, AKi onucyomv weuokocmi odioximiunux npouecie. Ilpoananizosano, AK 300parxcyecmvca cman cucmemu 6
ooginvnuii momenm uacy. ITokazano, AK onUCYEMbCA 3MINA CIARY CUCHIEMU 3 RAUHOM YACy 3a OOROMO2010 Onepamopa
esonrouii. Posenanymo i 0ocnioxceno npuknadu ¢pazoeux nopmpemie.

Knrwwuoei cnosa: dioximiunuii npoyec, cucmema oughepenyiatoHux pieHans, (hazosuti nopmpen.

I'.H. I'y6aasb
MATEMATHUYECKHA AHAJIN3 KAYECTBEHHBIX XAPAKTEPUCTHK PEIIEHUIA
CUCTEM JUPOPEPEHIIMAJIBHBIX YPABHEHUMU, OIINCBIBAIOIIIUX CKOPOCTHU
BUOXUMHNYECKHUX IMTPOLECCOB

B cmamve 6binoHeHo mamemamuuecKuil  aAHAIU3 KAYECMBEHHBIX XAPAKMEPUCMUK pelenuil  cucmem
ougdepenyuanvnbix ypasHeHuil, ORUCHLIGAIOWUX CKOpOCcmU Ouoxumuueckux npoyeccos. Ilpoananuzuposano, Kak
U300parx@caemca cocmoanue CUcmemsl 6 NPOu3eonbHvlilt momenm epemenu. Ilokazano, Kak onucvieaemcs uszmenenue
COCMOAHUA CUCHEMbL C MeYeHUeM 6PeMeHU ¢ NOMOubIo onepamopa réonouuu. Paccmompeno u uccnedosano npumepoi
daszoevix nopmpemog.

Knrouesvie cnoea: 6uoxumuueckutl npoyecc, cucmema oupghepenyuanbhbix ypasHenuil, hpazosbvlii nopmpen.

Problem formulation. Mathematical modeling of biochemical processes rates in biological
systems can mainly be reduced to the construction of the system of differential equations of the following
form

dc

d_tlz fl(C]:C2’C3""’CN)’

dc

d_t2: f2(c1aczac3""’c7\’)’

ic (1)
d_t3= f3(C1aC29C39""cN)’

dc

d_tN= fy(C1,Cy5Cynnnnny)

where
- f.(c,c,,cC,,...,cy) are generally nonlinear functions that do not explicitly depend on time t;

- C,,C,,C,,...,Cy are the concentrations of substances in biochemical reactions that are functions of
time and initial conditions. The concentrations of substances cannot be negative.
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Since the system (1) describes changes in the concentrations of substances over time, then it is
dynamic.

Mathematical analysis of qualitative characteristics of solutions of systems of differential equations
of the form (1) is especially important.

Analysis of the latest research and publications. If the right-hand sides of the differential
equations of the system (1) are linear functions of their arguments, then the system of equations (1) can be
solved analytically [1]-[4]. If the system (1) is a system of non-linear differential equations, then the exact

solution can only be obtained for some special types of functions f,(C,,C,,C;,...,¢,), and in the general

case, this system of non-linear differential equations can only be solved by approximate numerical
methods.

However, all numerical methods have one significant disadvantage: in case of arbitrary change of
parameters or initial conditions, all calculations must be done from the very beginning. It is still
impossible to exactly predict what result we will get with each subsequent calculation. However, many
problems do not require accurate quantitative calculations, and a qualitative description of the phenomena
is enough, but it is important to be able to predict the change in the nature of the behavior of the system
when conditions change. This is especially important in biochemical problems, where the values of
parameters and initial conditions cannot usually be specified. Therefore, the mathematical description
should make it possible to find out significant qualitative characteristics [5]. For instance, whether there
are steady states in the system, whether these states are stable and how the nature of the stability of these
states changes when changing parameters.

Thus, there is no need to solve the complicated system of differential equations (1), that is to find

functions C,(t) in the explicit form, but it is enough to investigate the general laws of the behavior of the
system by the form of functions f,(C,,C,,C;,...,cy).

The larger the number of differential equations in the system of differential equations is, the more
difficult it is to conduct research and the less clear and obvious the results are. The article [6] discusses
how to reduce the number of differential equations in a system of differential equations in mathematical
modeling of biochemical processes rates in biological systems. The fewer differential equations remains
in the system (for example, two or three ones), the easier it is to investigate this system.

The aim of the investigation is to perform mathematical analysis of qualitative characteristics of
solutions of systems of differential equations describing biochemical processes rates; to analyze how the
state of the system is represented at an arbitrary moment of time; to show how the change in the state of
the system over time is described by the evolution operator; to consider and investigate examples of phase
portraits.

Presentation of the main material. For simplicity and greater clarity, let us consider the following
system of differential equations with two unknowns

dc
d_tl = fi(c,,c,),
2)

dc
d_t2 = f,(c,.c,).

In this case, in a qualitative study, we apply the method of the phase plane of a dynamic system
since a phase is a quantity that characterizes the state of the system (process) at a given moment of time
and is determined by the coordinates (in this case, by the concentrations) and the rates. Note, that we have
the phase space in the case of three variables and we have N-dimensional phase space for N variables.

The state of the system, at an arbitrary moment of time t, can be depicted by the phase point on the

phase plane OC,C,. The state of the system changes over time and the phase point depicting this state

moves along the phase plane OC,C,. Thus, dynamics of the system is represented by motion of the phase
point along the phase plane.
It is necessary to show how the position of the phase point (C,;C,) changes on the phase plane.

Let one defined phase point in the position P, on the phase plane of coordinates C,,C, correspond

to some state of the system at the moment of time {, i.e., to the set of the values C,(t,) and C,(t))

© I'M. I'ybanw



Miscsysiscoruil 30ipuux «HAYKOBI HOTATKHWy. Jlyyvk, 2021, No71 107

(Fig. 1). Then for time At the coordinate C, will change by the value AC, and the coordinate C, will

change by the value AC, and accordingly the phase point will move from the position P, to the position

P,. Considering infinitesimal increments of time, we can obtain all intermediate positions of the phase

point on the phase trajectory. The slope @ of the tangent line at each point of the phase trajectory is
2

. ... dc L
determined by the value of the derivative —= at this point.
1

C2A
/ P,
Ac, 0
1 r
@) f <

Fig. 1. The segment of the phase trajectory

Dividing the second differential equation of the system (2) by the first one, we obtain a new
differential equation that does not contain time t in explicit form:

d&_ fz(CpCz)

dc, ~ 1,(c.0) ®

The general solution of this differential equation that is usually simpler than the system (2) has the
form

C, = Cz(CwC)

and is a family of phase trajectories (orbits) of the system of differential equations (2), where the arrows
indicate the direction of movement along these curves with increasing time t, as in Fig. 2 (or is a family of
integral curves of the differential equation (3), without arrows), where
- phase trajectory is a trajectory of movement of a phase point along the phase plane, which depicts
how the state of a dynamic system changes over time t (the segment of the phase trajectory is
shown in Fig. 1);
- Cis a parameter that is determined by the initial conditions.
The qualitative behavior of the system is determined by the family of curves (trajectories)
indicating the direction of motion along these curves with increasing time t.
By the Cauchy theorem (on existence and uniqueness of a solution of differential equations), only
one integral curve, the slope of which at this point is determined by the equation (3), can pass through
each point of a plane.

Exceptions are fixed points (stationary points, equilibrium positions) at which f,(c,,c,)=0 and

f,(c,,C,) =0 simultaneously, i.e.,

4)
fl(cucz) =0.

{ fz(clacz) = O,
Thus, in the case of (4), the solution of the differential equation (3) is depicted by a fixed point, and
this solution is called a fixed point.
The angle of slope of the tangents at these points is undetermined, since, in this case, the equation
(3) takes the form
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dc, _0
dc, 0)

therefore, an infinite number of integral curves may intersect here.
In this case, taking into account the system (4), the system of differential equations (2) takes the
form

d
dt

de,
dt

The position of fixed points does not change for all values of time t.

.. ) dc ,
Thus, under the condition (4), the rates of change of the C,-coordinate, d—t', and the C,-coordinate,

dc . o . .
—2 (the rates of change of the concentrations of substances in biochemical reactions), become zero.

This means that fixed points on the phase plane OC,C, correspond to the positions of equilibrium of

the dynamic system, i.e., the concentrations of substances take stationary values.
Then the system of differential equations (2) takes the form

{fl(qu)=0,
fZ(EI’EZ):O'

If the differential equation (3) is solved analytically, then the family of integral curves can be
constructed exactly. The solution of the differential equation (3) gives only the connection between the

variables C,(t) and C,(t) at an arbitrary moment of time t, and we do not know C (t) and C,(t)

separately, i.e., we do not know the solution of the system of differential equations (2).

However, qualitative analysis makes it possible to determine the nature of the solution of the
system of differential equations (2) by the form of integral curves (by phase portrait). For this, we do not
even have to solve the differential equation (3), we just need to determine the position of fixed points and
construct the phase portrait of the system approximately geometrically.

Thus, the geometric interpretation of qualitative behavior of the solutions of the system of
differential equations (2) is the phase portrait of the system (2).

The phase portrait shows the direction of the phase point motion. Thus, the phase portrait shows the
qualitative picture of dynamics.

We can say that the phase portrait determines “the nature” of the fixed point.

Note that different systems of differential equations can have solutions with the same qualitative
behavior. This behavior is determined by the nature.

Systems of differential equations are qualitatively equivalent if they have an equal number of fixed
points of the same nature arranged in the same order on the phase plane.

Let us give the example of the phase portrait (Fig. 2a). Given the system of differential equations

dc,
@
)
dc,
—Z=—C,.
dt
dc, ¢, . . . . .
Hence, —= = —. Therefore, the system of differential equations (5) has the fixed point O with the
Cl Cl

coordinates C, =0, C, =0. On the phase plane Oc,C,, the family of phase trajectories is determined by
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the equation C, = Cc,, where a constant C becomes different depending on the initial data €, C,,,

c
c=29 (Fig. 2a). The arrows on the trajectories indicate the direction of motion of the phase point.
1(0)

C, C,
C0)
. C2(0
O Ci0) G O %10 C
a) b)

Fig. 2. Phase trajectories on the phase plane (phase portraits):
a) the system is stable; b) the system is unstable

Since C;,C, are the concentrations of substances, they cannot be negative.

Note, that the system of differential equations (5), in addition to the fixed point (0;0), has the
general solution

c(=Ae", c(t)=Ae"

oM _A
¢® A
real constants. We can see from the solution that when A #0, A, # 0, then C,(t) - 0 and C,(t) >0 as
t — oo that corresponds to Fig. 2a.

We can see from Fig. 2a that with negative signs in the right-hand side of the system (5), over time
t, all the phase trajectories tend to the fixed point (0;0) which is stable (stable node), i.e., the equilibrium
position of such a system is stable. Therefore, in this case, the phase point moves in the direction of a
fixed point (to the origin) from arbitrary initial conditions over time t (when time increases).

If we take positive signs in the right-hand side of the system (5), then from arbitrary initial
conditions, the phase point tends to infinity over time t, since the system (5) taking the form

which for all t, satisfies the equation or the equation C, (t) = %Cl (t) where A, A, are some

dc,

—1 = Cl’
dt

dc,

—==C
dt

also has the fixed point (0;0), but another general solution of the form

G (t) = Aleta C, (t) = Azet'

We can see from this solution that when A >0, A, >0, the C (t) = o and C,(t) -0 as t >0
what corresponds to Fig. 2b.
However, when initial data C,C,, correspond to the equilibrium position, i.e., C, =C, ,

Cy0) =C, (in this case, to the point (0;0) ), then the system will remain at this point, but arbitrary random

deviations AC, or AC, from zero will bring the system on the trajectory that goes to infinity. Such a fixed
point is unstable (an unstable node) (the phase portrait in Fig. 2b).
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Let us give another example of the phase portrait (Fig. 3). Given the system of differential
equations

d(Ac)

o Ac,,
d(AC,) _ ¢ (6)
dt 1

where AC, and Ac, are small deviations from stationary concentrations of substances, i.e., C, =C, +AC,,
C, =C, +Ac,.
To find the solution of this system of differential equations, we pass to polar coordinates on the
plane:
Ac, =rcosf, AC,=rsinb. (7)

Ac
Hence, I’ = (Ac,)’ +(Ac,)’, tgd=—"2, Ac, #0.
Ac,
Differentiating these expressions with respect to t, we obtain

Ac d(Ac,) Ac d(Ac)
A A 1 T8
2r IF opg JAG) 5z GAC) (2 4O dt_* dt
dt dt (Ac))
d(Ac d(Ac
Substituting the values (Ac) and (Ac) from the system of differential equations (6) into the
expressions obtained, we have
dr dr
ra =Ac, -AC, +AC, - (=AC,) or ra =0,
2
—(Ac,)’ —(Ac,)’ A
sec’ 0~d—9 C) (2 &) S e =—1-tg’0 or sec’ 9-d—0 =—sec’ 0,
dt (Ac)) Ac, dt
whence
g =0 and d—a =-1.
dt dt
From these equations we obtain
rty=A and O(t)=-t+A (8)

where A and A, are some real constants.
Substituting (8) into (7), we obtain the general solution of the system of differential equations (6):
Ac,(t) = A cos(-t+A), Ac,(t)=Asin(-t+A)
from which it follows that (Ac,)’ +(Ac,)’ = A’

In this case, the phase trajectories are the family of concentric circles centered at the fixed point
(0;0) (Fig. 3). This is another type of quality system behavior. The fact that the phase trajectories are
closed reflects the fact that AC,(t) and Ac,(t) are periodic functions with the same period.

In Fig. 3, the phase trajectories are closed, so the phase point passes through the same points of the
phase plane again and again over time t.

V4
Note, that, for example, for A >0,A =0 when t is increasing from t=0 to t:E,

Ac,(t) = A cos(—t+ A,) decreases and AC,(t) = |Al sin(—t + A2)| increases. This makes it possible to

set the direction of all trajectories (see the IV-th quadrant in Fig. 3).
These examples show that qualitatively different solutions lead to the phase trajectories with
different geometric properties.
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Ac,

Il \%

Fig. 3. Closed phase trajectories on the phase plane (phase portrait)

We can assume that the system of differential equations (2) defines the flow of the phase points on
the phase plane Oc,C,. Functions f,(C,C,) and f,(C,,C,) define the rate of this flow at each value
C, C,.

The solution C(t),C,(t) of the system of differential equations (2) that satisfies the condition
C (1) =Cyg)> C,(1)=Cy,, defines the evolution of the phase point which occupied the position
(Cy(0)5 Cy0)) at the moment of time t =1, i.e., its past (at t <t;) and future (at t >1,) positions.

Let us introduce a function y/, that is a phase flow or an evolution operator, e.g., the operator
that describes some flow on the plane.
The term “evolution operator” is usually used when v, describes a change in the state of the

system over time. The term «flow» (for example, the phase flow on the plane or the flow on the phase
plane) is more often used in the case when the dynamics is generally studied rather than the evolution of a
given point.

Consider the role played by the evolution operator on the plane.

For the system of differential equations (2), solutions can be obtained from each other by shifting

along the t-axis; the operator ,(C,,C,) converts the point (C;;C,) into the point obtained by moving
along the trajectories of the system of differential equations (2) for time t, i.e., ¥, : R* — R*. Thus, the
trajectory that passes though the point (C;C,) is the set of points {l//t(Cl,Cz):t € R}, oriented in

ascending t.
The trajectories of a linear system on a plane can be described using an evolution matrix.
Let in the system of differential equations (2)

fi(c.c,)=2a,¢c +a,C,, f,(C,C,)=a,C +ayC,.
Then we obtain the system of differential equations

dc,
E =q,,C, +a,C,,

e, =a,C +a,C
dt 211 2272

In matrix form, this system can be written as follows

de(t) _
— = Ac(h).

If the initial value ¢(t))=c¢, and eigenvalues A, =4, = A, of the matrix A are given, then the
solution of the system of differential equations has the form

C(t) — eA('[fto)cO — l//t_to (co)
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where

et =PV (E+ (-1, (A - 4E)),

)

de(t) A(t-ty)
dt '

Thus, the evolution operator for the system = Ac(l) is given by the matrix €

Consider the system of differential equations (6). We write the general solution of this system in

matrix form:
Ac(t)) (cos(-t+A) 0 A
Ac,(t)) 0 sin(—t+A) )| A

_[cos(-t+A,) 0
Ve = 0 sin(—t+ A)

whence
)

is the evolution operator for this system.
Thus, the evolution of the point (C; C,) is described (defined) by the formula (9).

Conclusions and prospects for further research. Mathematical analysis of qualitative
characteristics of solutions of systems of differential equations describing biochemical processes rates is
performed in the article. It is analyzed how the state of the system is represented at an arbitrary moment of
time. It is shown how the change in the state of the system over time is described by the evolution
operator. Examples of phase portraits are considered and investigated.

A promising area of further research is to determine the nature of the stability of a fixed point in
general cases.
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PeuenzenTu:
KoBanbuyk Irop PomanoBu4, jjonieHT Kadeapu MaTeMaTHYHOIO aHaJi3y Ta CTAaTHCTHUKH BoimHCBKOTO
HaIllOHAJILHOTO YHiBepcuTeTy imeHi Jleci Ykpainku, K.(h.-M.H., JIOIEHT BoNMHCHKOrO HaliOHAIBHOTO
yHiBepcuTeTy imeHi Jleci Ykpainku.
KoBans HOpiii BacunsoBuy, 3aB. kadeapu ¢isuku Ta BUIIOI MaTeMaTHKH JIyIIBKOTO HaI[iOHAILHOTO
TEXHIYHOTO YHIBEPCUTETY, K.(h.-M.H., T01eHT JIyIIbKOro HaIlliOHATBHOTO TEXHIYHOTO YHIBEPCUTETY
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