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AHAJII3 TUHAMIYHUX XAPAKTEPUCTHK POGOYOI'0O OPTAHA BIBPAIIMHOI'O
TPYBYACTOI'O KOHBEE€PA 3 YPAXYBAHHAM INIONNEPEYHUX KOJIMBAHDb

Y cmammi npeocmaeneno ananiz ounamiunux xapakmepucmuk Kinueeozo egexmopa eiopauiiinozo mpyouacmozo
KOH6eepa 3 ypaxy8anHAM NOnepeyHux Konueéanv. Memoouxka nonazac 6 OMpPUMAanHi ma po36'A3aHHi 3a2anNbHOZ0
ougpepenuianvrhozo pieHAHHA nOnepeuHUX Koaueans 3 euxkopucmannuam Qynkuiti Kpunoea. Takuii nioxio oae 3mozy mouno
SU3HAUUmMU pexcumu ma amniimyou konueans. Hoeusna 0ocnioscennn nonszae y 6paxysanti 6niugy npyicnoi 0CHo6u Ha
noGedinKy KiHUeso20 egexkmy, ui0 O003601A€ GUIHAYUMU KPUMUYHI YACMOMU RnApazumuux Konueamns. Ompumani
pe3yibmamu Maromov NPAKMUYHY UIHHICMb, OCKINbKU RIOGUWYIOMb CIMAOIIbHICIG MPAHCHOPMYSGAHHA Mmamepiany ma
Haoitlinicmy eiOpayiitHux mpyouacmux KOHEecpie y NPOMUCI080My 3ACHOCYBAHHI.

Knruoei cnosa: sibpayitinuti mpybyacmuii KOH8eep, nonepeyti KoNUGaHHs, GiopayitiHuLL pexcum, Napasumui KOIUGaHHs,
npycHa ocrosa, Gyukyii Kpunosa, Ounamiunuii ananis, 4acmoma KOIUBaHb.
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ANALYSIS OF DYNAMIC CHARACTERISTICS OF THE WORKING BODY OF A
VIBRATORY TUBULAR CONVEYOR CONSIDERING TRANSVERSE VIBRATIONS

The article presents an analysis of the dynamic characteristics of the vibration tubular conveyor's end-effector with
consideration of transversal vibrations. The methodology involves deriving and solving the general differential equation of
transversal vibrations using Krylov’s functions. This approach enables accurate determination of vibration modes and
amplitudes. The novelty of the research lies in accounting for the influence of the elastic foundation on the behaviour of the
end-effector, which allows identifying critical parasitic vibration frequencies. The obtained results provide practical value by
enhancing the stability of material transportation and improving the reliability of vibration tubular conveyors in industrial
applications.

Keywords: Vibratory tubular conveyor, transverse vibrations, vibration mode, parasitic vibrations, elastic foundation,
Krylov’s functions, dynamic analysis, vibration frequency.

Introduction. A critical challenge in designing and practically implementing vibratory conveying
systems, as highlighted in recent studies [6, 7, 11] is ensuring uniform material transportation along the
entire length of the end-effector (EE). Achieving uniform transportation speed is essential for improving
the efficiency and reliability of industrial processes involving bulk materials. This challenge becomes
particularly significant when dealing with elongated end-effectors subjected to transverse excitation forces,
common in tubular conveyor designs. Such transverse excitation forces induce not only the desired
beneficial vibrations required for material transportation but also additional unwanted parasitic transverse
vibrations. The superposition of intended and parasitic vibrations can lead to uneven material flow along
the conveyor's EE, and in extreme cases, may cause localized disruptions or even complete stoppage of
transportation. Despite considerable research in vibratory conveyor systems, the interaction between
transverse vibrations and the elastic foundation, particularly for elongated conveying elements, remains
insufficiently explored, necessitating further analytical and experimental investigations.

Problem statement. During the design of vibratory conveying systems, accurate calculation of
transverse vibration amplitudes along the entire length of the end-effector (EE) is essential to ensure stable
and uniform material transportation. Uneven vibration amplitudes can cause zones of inefficient or halted
transport, directly affecting conveyor performance. This issue is particularly relevant for vibratory tubular
conveyors (VTC) [1], characterized by elongated structures on elastic foundations. Generalized methods
available in the literature often fail to fully capture specific practical features, such as stiffness distribution
variations and local parasitic vibration phenomena. Thus, developing refined analytical methods to
accurately predict vibration modes and identify critical frequencies remains an important practical task for
improving conveyor reliability. A typical example illustrating this challenge is presented in Fig. 1.

Literature review. The literature [3] provides well-developed methodologies for calculating
transverse vibrations of elongated beams with distributed masses. However, the applied aspects of
calculating elongated end-effectors on an elastic foundation, which are characteristic of vibratory conveyor
structures, remain insufficiently explored.

Objectives of research. This study aims to perform an analytical calculation of the transverse
vibrations of the elongated end-effector of a vibratory tubular conveyor with an electromagnetic drive
mounted on an elastic foundation.

The primary focus is placed on investigating the influence of the elastic mounting characteristics on
the vibration modes and amplitudes of the end-effector.
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Fig. 1. Vibratory tubular conveyor

Thus, determining the vibration amplitudes and modes of the end-effector supported by elastic
elements is the main objective of this article.

Main material presentation. The structural diagram of the vibratory tubular conveyor (VTC) is
presented in Fig. 2.

Fig. 2. Structural diagram of the vibratory tubular conveyor

The length of the VTC's end-effector is / =2 m , with an outer cross-sectional diameter of
d =74.5 mm and an inner diameter of d, =68 mm. The VTC is designed with independent excitation of
m

out

the end-effector’s vibrations in both vertical and horizontal directions. The transverse excitation force P()
generated by the electromagnetic exciter (2), is applied at the midpoint of the end-effector. Along with the
intended beneficial transverse vibrations that ensure uniform material transportation, undesirable parasitic
vibrations may occur, disrupting the stability of material flow. The end-effector is mounted using four
spring blocks (3, 4, 5, 6) attached to the reactive element (7).

The computational model of the VT C end-effector with elastic suspensions, supports, and an applied
force is shown in Fig. 3. The elongated end-effector is supported by three elastic elements with stiffness
values CpCycy The stiffness ¢_ is considered as the total stiffness of spring blocks 4 and 5 (Fig. 2)

since the distance between these blocks is minimal.

The motion model of the end-effector, treated as an elastic beam with free ends and distributed mass,
is well-known from the literature, for example, in [4]. Given the significant length of the VTC's end-
effector compared to its transverse dimensions, the general equation of free vibrations for the end-effector
as an elastic beam with distributed mass, neglecting the rotational inertia of the cross-section, can be

written as follows:
e AP (1)
9 oxt
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Fig. 3. Computational model of the vibratory tubular conveyor end-effector on elastic
suspension under load conditions

where y is the displacement coordinate of the VTC end-effector points in the transverse (vertical)
direction; x is the coordinate of the VI'C end-effector points in the horizontal direction; 7 is time
EJ

C u
Here, EJ is the flexural rigidity (E is the modulus of elasticity, and J is the moment of inertia of
the VTC end-effector’s cross-section relative to the neutral axis perpendicular to the vibration plane); 1
is the mass per unit length of the end-effector.
The solution to this equation for principal vibrations takes the form:
y(x,1) = g(x)sin(pr + o) )
where (/)(x) is the vibration mode function, p is the natural frequency of vibrations, and « is the
phase shift angle of the vibration mode.
The integral function (/)(x) is equal to:
@(x) = Acoskx + Bsinkx + Cch kx + Dsh kx, 3)
up?
EJ
Due to the complexity of direct integration for boundary-value problems in beam vibrations,
Krylov’s functions method, known for simplifying integral forms and facilitating analytical and numerical
solutions, is applied [4]. Thus, we rewrite the integral using Krylov’s functions as follows:
¢(x) = AS(kx) + BT (kx) + CU(kx) + DV(kx), 4)
where Krylov’s functions S(kx),T(kx),U(kx),V(kx) are defined as follows:

1 1
S(kx) = E(Chkx + coskx), T(kx) = E(Shkx + sinkx),

where A,B,C,D are arbitrary constants determined from boundary conditions; k* =

(5)
1 1
Ulkx) = E(chkx —coskx), V(kx) = ?(shkx — sinkx)

In this case, since the VI'C end-effector has no fixed supports at its ends, the boundary conditions
are as follows:

¢ (0)=¢"(0)=0, (62)
@ "(0)=¢"(1)=0. (6b)
The integral that satisfies the condition at x = 0 (Eq. 6a) is:
(p(\) = AS(kx) + BT(kx). (7
For x =1:
¢(1) =AS(kl) +BT(kl)+(I>l+<D7+(D%+(DP, (8)

where (Dl + (D2 +@ +<DP are the values of Krylov's partial integrals, which for our conditions are
D
as follows
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Cl\
@ (x )— V[A 1 a )] )
(‘2\2
0(x) = P V[k(l—a7)]
€33
(P}(\)= B V[k(/—az)]
where (DP is the disturbing harmonic force, qu = - k:;:‘J V[k( i _az)]'
By satisfying Eq. (6b), Eq. (8) can be rewritten as‘ follows: o,
AU(AI)+BV(AI)+ T[A 1 a ]+ T[A 1 a )]
C \ P
+—T[A I a ]— P T[/\ I a, ] 0; (10)
C \' C \'
AT(kl) + BU(kl) + S[AI a ]+ 5[“ a )]
C \'
.S[L 1— a ]— ‘Ejs[/\ 1 a, ] 0.

Based on Egs. (7) and (8), a system of three equatlons is obtained, which considers the displacements

Y Yy Yy
Forx=a :AS(ka \+BT(ka ) -y =0
or : ( al) ( al) _Z:yl
Forx=a, As(k 2) BT(ka2)+ ] V[k(clz—tll)]—)’2=0§ (11)
For x = a,
‘ cY, ey, p
AS(ka,)+ BT(ka,) + 5 V[A (a,=a ]+ “—Hv[x( 3—a2)]— Py V[k(as—az)]—y}:O

Thus, the system of equations describing the natural vibration mode of the VTC end-effector,
considering Eqgs. (10) and (11), has the following form:
AS(ku |) + BT(ka |) =y, =0;

cy

AS(ka:) + BT(ka:) + k3E.II V[k(a2 —a I)] Y, = 0;

cy

o o)

+;‘1‘;j V[k(“z_“:)]— .3P< V["(“s‘":)]_-"ﬁO: (12)
e )

RGN e CGEN R

cy c.y

AT(kI) + BU(kI) + k31£; s[k(1=a,)]* A:b; s[k(1=a,)]*
('3_\'3 P
e 9] g S -] =0

The analytical solution of Eq. (12) by means of the constants A and B is complex and impractical
due to the high-order equations and nonlinear boundary conditions. Therefore, numerical methods

AS(ku}) + BT(ka}) +

AU(kl) + BV(ki) +

('\

+
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implemented in Mathcad software were utilized, providing efficient and accurate solutions that sufficiently
meet practical engineering requirements.
The unknown constants can be determined from the following equation:
X=c7'p, (13)
where X is the column vector of unknowns, C is the coefficient matrix, and P is the column vector
of external forces.
In expanded form, Eq. (13) can be rewritten as follows:

's(kul) T(kul) -1 0 0 I
| S0 ) T )] :
B . .
|| S ) S VKo, ma)] e 1|
:‘ k) V(ki) k;ﬂk(l-u,)] KEJ[ ] *131 ~ay)]

C ('

k3;_1 s(=a,)] Sk )

T(kl)  U(ki)

0 -
0
(13)
:;J V[A a_.—a )]
X
prT T[A l—a ]

1)
S|k(l—
| KEJ [ ( az)] |
The vibration mode function (p(x) in separate sections can be generally written as follows:
For0<x < a: @(x) = AS(kx) + BT (kx).

C \‘

Fora sx<a :g(x)=AS(kx) +BT(k\)+

For z12 <x< a3:

V[A I—a ];

cy €.y, p
%E; Vk(=a)]* — VK= a,)]- T ViK(i=a)] 9

(‘ \' (‘ \'

V[A -a ]+

7

¢(x) =AS(kx) + BT (kx) +
For a, <x<I:

¢(x) =AS(kx) + BT(kx) + *EJ

\.

XV[A I—u ]+ T V[A I—ux)]— ‘1;/ V[A I—u )]

The final equation of system (14) is the general equation for the vibration mode of the VTC end-
effector over its entire length. Thus, by determining the numerical values of the unknowns
A, B, Yp Yy Y, from Eq. (13) for given parameters of a mechanical vibration system with distributed
mass and substit{lting them into the vibration mode equation for the end-effector, the mode shape of the
end-effector at the specified excitation frequency @ can be obtained.

For the following parameters:
1=2m; a =0.55m;a = lm;az= 1.45m; E=2- 10! Pa; ¢, =268000 N/ m;

w=7kg/m; J=53-10""m™* P =200N; w = 157 "*!/s; c_=482142 N/ m;
c, 268000 N/ m.

the vibration mode function ¢ )(x) takes the form shown in Fig. 4a.

By setting the excitation frequency to @ = 3000 '"d/‘, the vibration mode of the end-effector is
presented as shown in Fig. 4b.
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Fig. 4. Vibration modes of the VTC end-effector for the excitation frequency
@@ © = 157 "/ pyw = 3000 /s
Conclusions. Based on the conducted research, the above-described mathematical model of the end-
effector allows for the analysis of vibration modes as well as their amplitudes at each point of the end-
effector. The developed mathematical model is an effective tool for determining parasitic dangerous
vibration frequencies of the end-effector, which contributes to improving the operational reliability of the
structure. The obtained results enable enhancing the accuracy of designing vibratory conveyors with
elongated end-effectors on an elastic foundation, which will improve their operational reliability. These
studies, as well as the identification of the most optimal attachment options for elastic elements, are
planned to be further investigated in future scientific work.
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