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МОДЕЛЮВАННЯ ТВЕРДИХ ЧАСТИНОК МЕТОДАМИ HOOMD-BLUE PYTHON ТА 
МОНТЕ-КАРЛО 

 
Методи Монте-Карло виявилися цінними при моделюванні фізичних об'єктів і процесів. Мова програмування 

Python є основним інструментом, який широко використовується серед наукових дослідників. Метод, використаний 
у цій статті, задає алгоритмічну основу для моделювання засипки твердих частинок. Використаний варіант 
метода Монте-Карло (HPMC). представляє частинки як об'єкти різноманітної форми, що не можуть накладатися 
одна на другу. У системі немає сил. притягання або відштовхування Виключно жорсткі зв'язки призводять до 
впорядкованих структур. Запропонований фреймворк включає всі етапи моделювання: метамову для опису форми 
частинок, інтегратор опуклих многогранників, ініціалізацію стану системи, пробні ходи (варіанти проміжних 
станів), зберігання конфігурації у файловій системі. 
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V. Serhieiev 
 

SIMULATION OF THE HARD PARTICLES WITH HOOMD-BLUE PYTHON AND 
MONTE CARLO METHODS 

 
Monte Carlo methods proved to be valuable in simulating physical objects and processes. The Python programming 

language is the mainstream tool used widely among scientific researchers. The method used in this article sets an algorithmic 
basis to the problem of hard particle Monte Carlo (HPMC) simulation. The HPMC represents particles as extended objects 
which are not allowed to overlap. There are no attractive or repulsive forces in the system. Purely hard interactions induce 
effective attractions between simulated particles which can lead to ordered structures. The proposed framework includes all 
steps for the simulation: meta language to describe particle shape, convex polyhedron integrator, system state initialization, 
trial moves, storing the configuration to the file system. 

Keywords: simulation, particle, structure, python monte carlo, framework, shape, meta, system. 
 
Formulation of the problem. 
Hard particle simulations are arguably one of the most fundamental model systems in soft matter 

physics, and hence a common topic of simulation studies. The primary obstacle in these simulations is the 
computational requirements for the system with a waste amount of simulated particles. The complexity 
calculation for N-body simulations is stated in [1]  as follows: Given initial positions and velocities of n 
particles that have pairwise force interactions, simulate the movement of these particles so as to determine 
the positions of the particles at a future time. 

During recent years various automated frameworks have been developed for designing hardware 
accelerators on reconfigurable platforms [2]. Applications written using general-purpose programming 
languages (Python, R, Julia) or specialized computational environments like MATLAB utilizing such 
algorithms on large-size data sets require high-volume computation platforms [3]. The focus is on N-body 
interaction problems which have a wide range of applications spanning from astrophysics to molecular 
dynamics. 

Another prospective approach is to utilize the capabilities of the quantum processing units or 
quantum computers. Quantum computing and quantum Monte Carlo (QMC) are respectively the most 
powerful quantum and classical computing methods for understanding many-body systems [4, 5]. 
Unfortunately current state-of-art near term quantum devices (NISQ era) are limited in computing power 
and error correction protocols; the quantum hardware capable of simulating practical-useful quantities of 
particles is not yet available for the wide audience. 

HPMC and Newtonian event-chain Monte Carlo method. 
This article uses the HOOMD-blue particle simulation engine to set an algorithmic basis and 

framework to the problem of hard particle Monte Carlo (HPMC) simulation. The HOOMD-blue package 
[6] is actively developed by the University of Michigan and available open source. HOOMD-blue is a 
Python package with a high performance C++/CUDA [7] backend that is built from the ground up for GPU 
[8] acceleration. The Python interface allows users to combine HOOMD-blue with other packages to create 
simulation and analysis workflows. The framework can execute simulations both on CPUs or GPUs. The 
library default installation supports NVIDIA GPUs and CPU support is always enabled. 
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Typical Monte Carlo simulations run more efficiently on GPUs for simulation sizes larger than a few 
thousand particles (1KB in memory for particle with modern hardware gives a ~100 000 000 soft limit for 
simulation), although this strongly depends on the details of the simulation: 

● The complexity of the definition of particle shape. 
● Spherical or cylindrical particles are easier to simulate from the computational cost while complex, 

unregular and more realistic particles require more computations to perform. 
● Simulation step parameters. 

HOOMD-blue engine implements Newtonian event-chain Monte Carlo (NEC) simulation method. 
In NEC a trial move is applied to a sequence and these collective moves form a chain which updates the 
configuration. Each update chain has a random start particle and is followed by the series of deterministic 
events. This is different in nature from the classical Monte Carlo method with local update. In classical trial 
moves a single randomly selected particle is either moved or rotated and new configuration is then accepted 
with Boltzmann factor. The Boltzmann factor collapses to an overlap check when simulating a system of 
hard particles. Newtonian event-chain NEC has best performance with a system of anisotropic particles and 
obeys the balance condition [9]. 

 

 
FIG. 1. Flowchart of Monte Carlo simulation for anisotropic particles. The algorithm 

combines event chains for translation moves and random trial rotation moves as in local Monte 
Carlo 

 
The core object of the engine - is ConvexPolyhedron integrator which implements HPMC 

simulations: 
mc = hoomd.hpmc.integrate.ConvexPolyhedron() 

The particle in simulation is described as a set of vertices, normalized in range 0..1. The shape of the 
particle alone controls how it interacts with other particles. Formally, the potential energy of the system is 
zero when there are no overlaps and infinite when there are. Purely hard interactions induce effective 
attractions between particles which can lead to ordered structures. The example below illustrates the 
definition of Octahedron particle: 

mc.shape['octahedron'] = dict( 
vertices = [ 
(-0.5, 0, 0), 
(0.5, 0, 0), 
(0, -0.5, 0), 
(0, 0.5, 0), 
(0, 0, -0.5), 
(0, 0, 0.5), 
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]) 

 
FIG. 2. The initial random state of the simulation of octahedron particles 

 
The particle class in the example above, 'octahedron' acts as a descriptor for defined shape. The 

simulation can have [1..N] particle shapes and sizes. The next example uses the “Dodecahedron” particle 
shape. 

 

 
FIG. 3. The initial random state of the simulation of dodecahedron particles 

 
FIG. 4. The initial random state of the simulation of spherical particles 

 
This shape structure is the standard array of the points (X, Y, Z) and could reuse existing public 

datasets for the complex particle shapes (construction materials, powder metallurgy, crystals). 
We have analyzed the speed of simulation depending on the sphericity of the particles. The trend is 

that the higher sphericity results in the higher speed-up. This makes sense because higher sphericity makes 
translations less critical for equilibrating polyhedra and rotation moves number decreases (since it has no 
effect on spheres). 
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FIG. 5. The speedup of the simulation with dependence on the sphericity of the particles 

 
During each time step in Monte Carlo the algorithm attempts to make a number of `nselect`  trial 

moves on each particle in the simulation. The NEC method has two types of moves: 
● Translation move - affects the position of the start particle, and then impacts all chains of particles. 
● Rotation move - rotate the particle by a random angle about a random axis. 

These parameters are properties of the integrator: 
mc.nselect = 2 

mc.d['octahedron'] = 0.15 
mc.a['octahedron'] = 0.2 

For the test simulation with ideal spherical particles the result with 10,000,000 steps gives the 
expected packing lattice: 

 
FIG. 6. The convergence test for spherical simulation 

 
The HOOMD-blue integrator should be set to use either CPU or GPU. It is a type of operation and 

integrates the simulation state at every time step. Assigning the HPMC integrator is required to the 
simulation object: 

cpu = hoomd.device.CPU() 
simulation = hoomd.Simulation(device=cpu, seed=1) 

simulation.operations.integrator = mc 
The seed value (passed to the simulation constructor above) selects the sequence of values in the 

pseudorandom number stream. Given the same initial condition and seed, HPMC simulations will produce 
exactly the same results. All operations that generate pseudorandom numbers use the seed set in the 
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simulation. Whenever you add operations that utilize random numbers, you should set the seed to a non-
default value. 

HOOMD-blue does not adopt any particular real system of units. Instead, HOOMD-blue uses an 
internally self-consistent system of units and is compatible with many systems of units. For example: if you 
select the units of meter, Joule, and kilogram for length, energy and mass then the units of force will be 
Newtons and velocity will be meters/second. A popular system of units for nano-scale systems is 
nanometers, kilojoules/mol, and atomic mass units. 

Run the simulation to randomize the particle positions and orientations. The run method takes the 
number of steps to run as an argument. 10,000 steps is enough to randomize a low density system: 

simulation.run(10e3) 
During each step the algorithm combines event chains for translation moves and random trial rotation 

moves as in local Monte Carlo. In the example the acceptance ratio (the fraction of attempted moves which 
are accepted) is very high since this is a low density simulation. 

 

 
FIG. 7. The accepted moves versus attempted moves ratio 

 
The resulting packed cluster of particles shown on the figure below. 
 

 
FIG. 8. The converged results visualization for octahedron simulation 

 
Conclusion. 
 
The simulation algorithm uses the XenoSweep extension of XenoCollide [10] library for detecting 

collisions among a limitless variety of convex shapes. It is based on the technique “Minkowski Portal 
Refinement”. The method of simulation of the hard particles using HOOMD-blue is an important 
improvement both in terms of speed and in terms of simplicity of the algorithm. Such computation 
efficiency and simplicity in setup simulation is of interest to researchers working on a broad range of 
problems in computer graphics, robotics, and granular dynamics.  
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The great feature of the HPMC is that it automatically tunes simulation parameters to improve 
performance. During the first 1,000 - 20,000 timesteps of the simulation run, runtime will optimize kernel 
parameters each time it calls a kernel. 

Future extensions should advance this method in two directions: improved handling of rotations and 
generalization to anisotropic particles with extended interaction, i.e. particles that are not purely hard. Next 
steps in the method improvement should focus on developing collective rotations moves that resemble 
conceptually the idea of event chains for translations. Such an improved algorithm has the potential to reach 
a speed-up of up to one order of magnitude across all convex polyhedra. 
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