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Ynemumym npo6nem mamepianosnascmea im. I M. ®panyesuva HAH Vrpainu,
’Hayionanvruii mexuiunuii ynigepcumem Yrpainu "Kuiscoxutl norimexuiunutl incmumym imeni Ieops
Cixopcbkozo".

E®EKTHUBHI IIPYKHI BJJACTUBOCTI IIOPUCTUX MATEPIAJIIB 31 CTPYKTYPOIO
IHBEPCHOT'O OIIAJIY

Baszyrouuce na meopemuunux 3acadax mMexaniku KOMRO3umie winaxom cKiHueHHO-el1eMEeHNH020 MOOeNI06AHHA OY10
00CNi0XHCEHO eheKmusHy RNpYyHCHY NO6EOIHKU NOPUCIOZ0 Mamepiany 3 nepiooudHol CHMPYKmypoio iH6epCcHOz0 onay.
30iiicH106a10Ch 0cepeonenHA RUMOMOI nPYIHCHOT enepeii Ha RPeOCMABHULLKOMY 0CePeOKy iH8EPCHO20 ONAJly 3a PI3HUX CXeM
depopmyeanns. 3a paxynok ybo2o 0yn0 3HAOEHO eheKmueHi MoOynbL 3¢yey ma 00’ €MHUIL MOOYIb ONA PIZHUX BUNAOKIE
cmpyKkmypu ineepcnozo onaiy. Buseunoce, wjo epexmueni mooyni npysyncnocmi éKkpail uymaugi 00 nopucmocmi. 30Kpema
Hanecenns 000amK08020 ROKPUMMA, HAGIMb MOBUUHOI0 Mehuiolo 6i0 0.05 diamempy chepuunux nop (6uxionux 4acmuHox
nonimepy), UKIUKAE 30iNbUMEHHA eieKMUBHO20 00 EMHO20 MOOYnA npyxycHocmi 6 4 pazu, a 3¢cyenozo ac é 6 pasie.

Knrwuogi cnosa: memamamepianu, ingepcHuil onai, npeocmasHUuybKull 0cepedox, MOOYIi NPYHCHOCI, MIKPOMEXAHIKA.
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EFFECTIVE ELASTIC PROPERTIES OF POROUS MATERIALS WITH INVERSE OPAL
STRUCTURE

Based on the theoretical principles of composite materials mechanics, the effective elastic behavior of a porous material
with a periodic inverse opal structure was investigated by finite element modeling. The specific elastic energy was averaged on
a representative cell of the inverse opal under different deformation schemes. This allowed us to find the effective shear modulus
and bulk modulus for different cases of the inverse opal structure. It turned out that the effective elastic moduli are extremely
sensitive to porosity. In particular, the application of an additional coating, even with a thickness less than 0.05 of the diameter
of the spherical pores (the original polymer particles), causes an increase in the effective bulk modulus of elasticity by a factor
of 4, and the shear modulus by a factor of 6.
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1. Introduction.

In recent years, intensive research has been conducted on the phenomena associated with the negative
refractive index of electromagnetic waves [1]. The reason for the intensification of these studies was the
emergence of a new class of nanostructured composite materials that have an ordered periodic structure
and are called metamaterials. The structure of these materials can be changed so that they have a wider
range of electromagnetic characteristics, including a negative refractive index. One type of metamaterials
is porous materials with an inverse opal structure, and such materials are also being investigated as
promising structural materials with high specific strength and stiffness characteristics [2]. Inverse opal
structures, characterized by their unique geometry and mechanical properties, have emerged as a focal point
in recent research due to their versatile applications. One notable advancement is in the domain of wound
management, where inverse opal hydrogel layers incorporated into Chinese herb hydrogel patches have
demonstrated significant improvements in mechanical properties. This development is crucial for medical
applications, offering a promising pathway for the creation of advanced wound care solutions [3].

The inverse opal structure is made in several stages [4]. The first stage is the self-assembly of
polystyrene spheres into an opal structure on a substrate by slowly evaporating the colloidal solution of
these spheres. The second stage is sintering of the spheres to form a bond between them. The third stage
involves electrodeposition of nickel to fill the remaining space between the spheres. The fourth stage is the
etching of polystyrene to obtain the actual inverse opal structure, after which an additional layer of the same
or another material can be applied to the formed structure. The periodic cell of the inverse opal is shown in
Fig. 1.

Although the structure of the pore space in an inverse opal is quite complex, it can be characterized
by only two parameters, such as the isthmus between spherical pores and the thickness of the coating
applied to the metal frame, according to the material production technology. In this work, the porosity and
thickness of the additionally deposited nickel layer are used as a characteristic of the structure. Nickel [4]
is considered as a solid phase material for such a porous composite, both for the main structure and for the
additional layer.

The Goal of this work is to find the effective elastic properties of materials with an inverse opal
structure by finite element modeling on a unit cell.
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a)

Fig. 1. Periodic cell of inverse opal a) uncoated; b) coated.

2. Micromechanical averaging procedure on a unit cell.

Inverse opal is a microheterogeneous material with a regular periodic structure. For composites of
this type, approaches to finding effective properties are well developed [5]. For materials with a periodic
structure, micromechanical averaging is sufficient to be carried out within a periodic cell, i.e., on a scale of
heterogeneity that is smaller than the scale of the averaging length [6]. On the scale of the averaging length,
the boundary of the representative cell is distorted close to a linear transformation [7], and in the case of an
elementary periodic cell, generally speaking, it is not [8].

However, due to symmetry, in the case when there are no shear components of macroscopic
"effective” deformations in the XYZ coordinate system shown in Fig. 1, the cell will retain a rectangular
shape during such deformation. Using this, in the following, as a first approximation, we will consider the
inverse opal as an isotropic composite. In this case, we assume that the main axes of the macroscopic stress
and strain tensors are directed along the XYZ coordinate axes from Fig. 1. Accordingly, to describe the
elastic behavior of the inverse opal, it will be sufficient to find only two independent elastic moduli, for
example, the shear G and bulk K elastic moduli.

For this purpose, the elementary (representative) volume extracted from the material space is
subjected to two loading schemes - hydrostatic compression and pure shear (Fig. 2.2).

To set up a numerical experiment to determine the effective elastic properties of a nanostructured
material, it is necessary to use the properties of the solid phase of a porous material. In our study, the solid
phase of the base and coating is electrodeposited nickel, the elastic constants of which correspond to the
properties of pure nickel (Table 2.1).

Table 2.1
Solid phase material elastic properties
Material Density, p Young’s Modulus, E Poisson’s ratio, v
Electrodeposited nickel 8900[%] 171 GPa 0,31
o I
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Fig. 2.2. Scheme of elementary volume loading: a) hydrostatic compression scheme; b) shear
loading scheme.

As mentioned above, the structure must be subjected to hydrostatic and shear loading. In order to
represent this mathematically, we have used the boundary conditions on the unit cell (UC), which are
transformed into a strain matrix (eioj) from which we can calculate the normal strain (e®) and shear strain
(y°) using the following formulas:

e =ed +ed, +ed; (2.1

1
Yl = ﬁ\j(ell —e2)% + (€22 — €33)% + (e33 — €11)% + 6(ef, + €35 + e3) (2.2)

© I1.0. Kopobko, A.B. Kyzemos



48
Mioceysiecokuil 30ipnux « HAYKOBI HOTATKH». Jhyyek, 2024, Ne77

Since the boundary of the elementary volume is a parallelepiped, considering the symmetry of the
structure, the conditions for micromechanical averaging of a composite with a periodic structure can be
represented in the form of displacements of the edges perpendicular to the axes of a rectangular coordinate
system (Table 2.2). [5]

Table 2.2
Representative cell boundary conditions
Stress scheme Boundary conditions e e | y°
#i=(1,00):U, =X 1.0 0
Hydrostatic 7=(01,0):U,=-Y e =10 1 0 3 0
#i=(001):Us = —Z 0 0 1
S 1 0 O
7=(100):U, =X o _ |~ _10 1
Shear 7 = (0,1,0): U, = —Y A O I ol [ 0]2

3. Description of finite element modeling

The loading process is modeled by the finite element method in the ABAQUS/Standard software
environment. The material model is assumed to be isotropic elastic, with the properties shown in Table 2.1.
We apply displacements corresponding to the shear and hydrostatic loads to the elementary cell on the
corresponding faces in accordance with the parameters given in Table 2.2. We use the automatic division
of the solid phase of the structure into a mesh of ten-node quadratic tetrahedral finite elements by the type
of volumetric stress. The results of modeling the hydrostatic compression of a structure with a pore diameter
of 495 nm and a 33 nm nickel layer are shown in Fig. 2.3.

The target parameter for hydrostatic load modeling is the value of the total internal energy ALLIE
accumulated during deformation. Having determined this parameter, we calculate the value of the total

elastic specific energy from the following expression:
W= ALLIE

‘/C )

(2.3)

where 1/, — the volume of the representative cell.
On the other hand, the total elastic specific energy W is defined as [6]:

W =2 (02 + 6007, 2.4)

where K — Bulk modulus, Pa; G — Shear modulus, Pa.
Taking into account the boundary conditions (Table 2.2), we can calculate the Bulk modulus K from
formula (2.4) using the following formula:

2
where W, — specific elastic energy accumulated as a result of hydrostatic compression, Pa.

E, Ma

Fig. 2.3. Maximal strain under hydrostatic stress condition
Similarly to hydrostatic compression, we model the shear deformation (Fig. 2.4). The desired
parameter in the shear load modeling is the value of the total internal energy ALLIE accumulated during
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the deformation process. After determining this parameter, we calculate the value of the total elastic specific
energy using formula (2.3).

Given the boundary conditions (Table 2.2), we can calculate the shear modulus G from formula (2.4)
using the following formula:

1
G = > Wsn (2.6)

Fig. 2.4 Maximal strain under shear stress condition

The obtained values of the bulk modulus K and the shear modulus G fully describe the isotropic
elastic behavior of the inverse opal structure under load. In Hooke's law for an isotropic linear elastic
material, there is an unambiguous relationship between the elastic constants of the material, so the following
dependencies are valid for determining the effective Young's modulus E* and Poisson's ratio v¢ [9]:

err _ 9KG
B =5k yo @7
vefrf —M (2.8)
23K +6)’ '

Summarizing the values obtained from the finite element modeling with the results of analytical
calculations in the form of a table (Table 2.3), while comparing them with the properties of the solid phase
material.

Table 2.3
Numerical calculations results

Structure ®,% | Wy, [GPa] | Wy, [GPa] | K,[GPa] | G,[GPa] | E,[GPa] \
Bulk Ni 0 - - - - 171 0,31
NilO 260nm 90 8,67 0,588 1,93 0,294 0,84 0,427
NilO 520nm 84 21,5 2,53 4,77 1,27 3,49 0,378
NilO 930nm 90 8,01 0,513 1,78 0,257 0,735 0,431
NilO 470+19nm 65 79,3 14,4 17,6 7.2 19 0,32
NilO 495+33nm 57 113 22,5 25,1 11,25 29,3 0,305

Conclusion: As can be seen from the calculation results, both the bulk and shear moduli of elasticity
depend significantly on the structure of the inverse opal. The porosity of 0.9 is almost the limit for inverse
opal and corresponds to a structure with thin cross-links. In this case, the stiffness of the inverse opal is
about two orders of magnitude less than the stiffness of the solid phase material (i.e. nickel). In this case,
the bulk modulus decreases less than the shear modulus. However, a slight decrease in porosity from 0,9 to
0,84 causes an approximately fivefold increase in the shear modulus and Young's modulus. The application
of an additional layer causes an even more significant increase in the stiffness of the inverse opal. An
additional coating, even with a thickness less than 0,05 of the diameter of the spherical pores (the original
polymer particles), causes a 4-fold increase in the effective bulk modulus of elasticity and a 6-fold increase
in the shear modulus.
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