NUMERICAL MODELING OF A MACHINE FOR SEPARATION AND CLEANING OF CASTOR BEAN SEEDS FROM FRUITS
DOI:
https://doi.org/10.36910/acm.vi51.1853Keywords:
castor bean, seed, cleaning, separation, modelling, optimizationAbstract
In modern EU strategies, the development of the bioeconomy plays an important role, aiming at the gradual replacement of petrochemical raw materials with biological ones. The agricultural sector can make a significant contribution to this process by cultivating industrial crops on low-productive lands. One of the promising crops is castor bean (Ricinus communis L.), which is suitable for technical oil production. However, its harvesting and processing are complicated due to the uneven ripening of the fruits and the lack of specialized machines.
This study proposes a new design of a machine for cleaning castor bean seeds, which combines mechanical fruit shell destruction with subsequent aerodynamic cleaning. The proposed machine integrates crushing and reverse cones with rubber linings to break the fruit shells without damaging the seeds, along with an aerodynamic cleaning system for removing light impurities. Using numerical modeling in Simcenter Star-CCM+, based on DEM and CFD methods, the interaction between the fruits and the machine’s working parts as well as the separation processes were analyzed. Regression equations were developed to determine the seed separation productivity, the share of unthreshed fruits, and the content of viable seeds in the seed collector, depending on technological parameters. The optimal values are: the gap between the crushing and reverse cones – 8.6 mm; the rotation speed of the crushing cone – 291 rpm; the feed opening diameter – 98 mm; the cone axis inclination angle – 3.6°; the airflow velocity – 6 m/s; and the sieve inclination angle – 20.3°. The proposed machine ensures high-quality cleaning of castor bean seeds with minimal damage, increases productivity, and reduces dependence on manual labor, which is crucial for the industrial processing of this crop.
References
Alexopoulou, E., Papatheohari, Y., Zanetti, F., Tsiotas, K., Papamichael, I., Christou, M., Namatov, I., & Monti, A. (2015). Comparative studies on several castor (Ricinus communis L.) hybrids: Growth, yields, seed oil and biomass characterization. Industrial Crops and Products, 75, 8–13. DOI: 10.1016/j.indcrop.2015.07.015
Anjani, K. (2012). Castor genetic resources: A primary gene pool for exploitation. Industrial Crops and Products, 35(1), 1–14. DOI: 10.1016/j.indcrop.2011.06.011
Bateni, H., & Karimi, K. (2016). Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chemical Engineering Research and Design, 107, 4–12. DOI: 10.1016/j.cherd.2015.08.014
Carrino, L., Visconti, D., Fiorentino, N., & Fagnano, M. (2020). Biofuel production with castor bean: A win–win strategy for marginal land. Agronomy, 10(11), 1690. DOI: 10.3390/agronomy10111690
D’Avino, L., Di Bene, C., Farina, R., & Razza, F. (2020). Introduction of cardoon (Cynara cardunculus L.) in a rainfed rotation to improve soil organic carbon stock in marginal lands. Agronomy, 10(7), 946. DOI: 10.3390/agronomy10070946
Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R. C., Gross, K. L., & Robertson, G. P. (2013). Sustainable bioenergy production from marginal lands in the US Midwest. Nature, 493(7433), 514–517. DOI: 10.1038/nature11811
Janiszewska, D., Olchowski, R., Nowicka, A., Zborowska, M., Marszałkiewicz, K., Shams, M., Giannakoudakis, D. A., Anastopoulos, I., & Barczak, M. (2021). Activated biochars derived from wood biomass liquefaction residues for effective removal of hazardous hexavalent chromium from aquatic environments. GCB Bioenergy, 13(7), 1247–1259. DOI: 10.1111/gcbb.12839
Kudriavtsev, I. (2024). Numerical simulation of the waste separation process of sunflower seed mixture in the pneumatic separating channel of the aerodynamic separator. Техніка, енергетика, транспорт АПК, 2(125), 47–55. DOI: 10.37128/2520-6168-2024-2-5
Ogunniyi, D. S. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086–1091. DOI: 10.1016/j.biortech.2005.03.028
Park, K., Sanjaya, S. A., Quach, T., & Cahoon, E. B. (2021). Toward sustainable production of value-added bioenergy and industrial oils in oilseed and biomass feedstocks. GCB Bioenergy, 13(10), 1610–1623. DOI: 10.1111/gcbb.12883
Pari, L., Latterini, F., & Stefanoni, W. (2020). Herbaceous oil crops, a review on mechanical harvesting state of the art. Agriculture, 10, 309. DOI: 10.3390/agriculture10080309
Román-Figueroa, C., Cea, M., Paneque, M., & González, M. E. (2020). Oil content and fatty acid composition in castor bean naturalized accessions under Mediterranean conditions in Chile. Agronomy, 10(8), 1145. DOI: 10.3390/agronomy10081145
Vallejos, M., Rondanini, D., & Wassner, D. F. (2011). Water relationships of castor bean (Ricinus communis L.) seeds related to final seed dry weight and physiological maturity. European Journal of Agronomy, 35, 93–101. DOI: 10.1016/j.eja.2011.04.003
Von Cossel, M., Lewandowski, I., Elbersen, B., Staritsky, I., Van Eupen, M., Iqbal, Y., Mantel, S., Scordia, D., Testa, G., Cosentino, S. L. et al. (2019). Marginal agricultural land low-input systems for biomass production. Energies, 12(16), 3123. DOI: 10.3390/en12163123
Wang, L. (2004). Theoretical study of cyclone design (Doctoral dissertation, Texas A&M University).
Wydra, S., Hüsing, B., Köhler, J., Schwarz, A., Schirrmeister, E., & Voglhuber-Slavinsky, A. (2021). Transition to the bioeconomy – Analysis and scenarios for selected niches. Journal of Cleaner Production, 294, 126092. DOI: 10.1016/j.jclepro.2021.126092
Zanetti, F., Monti, A., & Berti, M. T. (2013). Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Industrial Crops and Products, 50, 580–595 DOI: 10.1016/j.indcrop.2013.08.030
Zhao, B., & Su, Y. (2018). Particle size cut performance of aerodynamic cyclone separators: Generalized modeling and characterization by correlating global cyclone dimensions. Journal of Aerosol Science, 120, 1–11. DOI: 10.1016/j.jaerosci.2018.02.009
Алієв, Е. Б. (2019). Фізико-математичні моделі процесів прецизійної сепарації насіннєвого матеріалу соняшнику: монографія. Запоріжжя: СТАТУС. https://aliev.in.ua/doc/knigi/kniga_4.pdf
Алієв, Е. Б. (2020). Механіко-технологічні основи процесу прецизійної сепарації насіннєвого матеріалу соняшнику: дис. ... д-ра техн. наук: 05.05.11. Запоріжжя. 530 с.
Ведмедєва, К. В., Кавязіна, М. Ю., & Махова, Т. В. (2018). Оцінка зразків рицини за господарсько-цінними ознаками. Науково-технічний бюлетень Інституту олійних культур НААН, 26, 39–48. https://bulletin.imk.zp.ua/pdf/2018/26/Vedmedeva2_26.pdf
Кудрявцев, І. М. (2024). Чисельне моделювання процесу сепарації відходів насіннєвої суміші соняшнику в камері розрідження аеродинамічного сепаратора. Вібрації в техніці та технологіях, 2(113), 132–142. DOI: 10.37128/2306-8744-2024-2-15
Петраченко, Д. О., Мохер, Ю. В., & Коропченко, С. П. (2023). Технологія обрушення насіння промислових конопель для малого бізнесу. Scientific monograph. Riga, Latvia: Baltija Publishing, 645–671. DOI: 10.30525/978-9934-26-328-6-29
Теслюк, Г. В. (2020). Обґрунтування технологічного процесу, параметрів та режимів роботи машини для виділення насіння гарбуза: дис. ... канд. техн. наук: 05.05.11. Дніпропетровськ. 147 с. https://uacademic.info/ua/document/0410U001669
Шевчук, В. В., & Сукач, О. М. (2018). Процеси і засоби для подрібнення насіння олійних культур: монографія. Львів: Львівський національний аграрний університет. 105 с. https://repository.lnup.edu.ua/jspui/bitstream/123456789/558/1/Shevchuk_monograf.pdf








