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THE USE OF A WAVELET TRANSFORMATION FOR REMOVAL OF THE NOISE
COMPONENT FROM THE VIBRO SIGNAL

The article investigates the use of wavelets to remove noise from the measuring vibration
signal. It is determined that wavelets are well adapted for signal analysis, for which the principle of
causality is important: wavelets preserve the direction of time and do not create parasitic interference
between the past and the future. Criteria for selecting an analytical wavelet have been developed,
depending on what information should be extracted from the signal and the need to more fully identify
and emphasize certain properties of the analyzed signal. It is proposed to use Daubechies wavelets to
process the vibration signal data. The simulation of vibration signal filtering from noise with the
normal distribution law is performed in the MATCAD package. It is proved that the method of wavelet
transform allows to solve the problem of filtering the vibration signal from noise when processing
vibration signals obtained by autonomous recording devices in conditions of increased interference
from the environment. The obtained results evidence to the prospects of the developed method and its
advantages in comparison with the hardware solution of the filtering problem.

Keywords: vibration signals, noise component of a signal, wavelet transform, threshold
methods of signal processing.

Introduction. Modern means of control and diagnostics of units of machines and equipment
are mostly based on the principles of measurement and analysis of vibration signals. This is due to the
fact that vibration control in mechanical systems gives the largest amount of diagnostic information
compared to methods such as temperature control, lubricant analysis and others. It follows that the
vibration signal can detect almost all types of defects in the components of machines and equipment
without the involvement of other types of physical processes for diagnosis. It is known that
measurements during vibration diagnostics of equipment are carried out at the place of its operation.
This leads to the impact on the measured signal of various industrial disturbances, which create in the
measurement channel noise of complex amplitude-time implementation in a wide range of
frequencies. These noises distort the vibration signal information and cause significant measurement
errors.

That is due to the accuracy and reliability of the signal. The signal is of great importance.

Main part. Recently, there has been interest in other integral transformations, in particular,
the wavelet transform (or discrete wave transform). It is used mainly for the analysis of nonstationary
signals and for many problems of this kind it is more effective than the Fourier transform. The main
difference of the wavelet transform is the decomposition of data not by a sine wave (as for the Fourier
transform), but by other functions, that are called wavelet generators. Wavelet-forming functions, in
contrast to an infinitely oscillating sine wave, are localized in some limited region of their argument,
and far from it are zero or negligible.

The computational technique of wavelet transform allows to solve the problem of filtering
(noise reduction) in relation to the spatio-temporal data obtained during vibration monitoring (when
using threshold functions of different shapes, the level of detailing coefficients is limited) [1]. By
setting a certain threshold for their level and "cutting off" the coefficients below this threshold, you
can get a significant reduction in noise. It is proposed to use Daubechies mother wavelets to process
the vibration signal data.

Since the wavelet transform is a scalar multiplication of the analyzing wavelet at a given scale
and the analyzed signal, the coefficients of the scale-time spectrum W (a, b) contain combined
information about the analyzing wavelet and the analyzed signal (as well as Fourier transform
coefficients containing information about the signal and about a sinusoidal wave). The choice of
analyzing wavelet is usually determined by what information needs to be extracted from the signal.
Each wavelet has characteristic features in time and frequency space, so sometimes with the help of
different wavelets you can more fully identify and emphasize certain properties of the analyzed signal.
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Wavelets are well adapted for signal analysis, for which the principle of causality is important:
wavelets preserve the direction of time and do not create parasitic interference between the past and
the future.

It should be noted that when analyzing a complex one-dimensional signal or when using a
complex analyzing wavelet as a result of wavelet transform, two-dimensional arrays of values of the
modulus of coefficients and phase are obtained.
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Fig.1. Mother Daubechies wavelet D4.

That is, the wavelet scale-time spectrum W(a,b) in contrast to the Fourier spectrum is a
function of two arguments: the time scale of the wavelet - a (in units of inverse frequency), and the
time offset of the wavelet on the signal-b (in units of time), while the parameters a and b can take any
value within the scope of their definition. The appearance of Daubechies orthogonal wavelet filters or
so-called compact carrier filters has greatly increased interest in wavelet analysis, as new opportunities
have opened up not only for the theoretical but also for the practical application of wavelet transforms.

It is important to note that Daubechies wavelet filters are built based on the criterion of filter
length and, therefore, are filters with a finite number of coefficients [1]. It is customary to denote the
wavelet functions w(x) of Daubechies filters by the letter D with the addition of a number
corresponding to the length of the Daubechies wavelet filter, ie D2, D4, D6, etc.

The theoretical basis of the computational technique for purification of the vibration signal
from noise is the use of threshold functions of different shapes, based on which the level of detailing
coefficients is limited [2,8,9].

For the first time the idea of eliminating electrical noise from signals using wavelet transform
originates in the work of Donohue and Johnstone [3,4], which proposes the use of a certain threshold
to eliminate Gaussian white noise in electrical signals.

Thus, by setting a threshold of a certain level and "cutting off" the coefficients below this
threshold, you can significantly reduce the noise level and compress the signal. A known example of
threshold functions is presented in Fig.1. Figure 1 (a) shows a hard threshold function - hard (hard
threshold evaluation), which is described by the following expression:

. X, if [x|=T
X) =
4 0, if |x|<T. 1)

Here, the value of T is a certain threshold value, the possibility of determining which will be
discussed below, as x and y are the input and output values of the conversion coefficients. Figure 2 (b)
presents a soft threshold function (soft threshold evaluation), which is described by the following
expression:

(2)

~ sign(x)- (x| -T) if [x=T
W=, if [x<T.
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The notation given in expression (2) is the same as described above in (1). The option sign (x),
that determines the sign of the coefficient x, is a function of the form:

1, if x>0,
ign(x) = <0, if x=0, 3)
-1, if x<O.

It is known that the main difference between the soft threshold function and the hard one is
that the first of them does not contain a gap at a point determined by the limit value T [1,5]. In other
words, the soft threshold function, unlike the hard one, is continuous. The latter circumstance, in the
case of soft threshold processing, allows the best way to process a noisy vibration signal in the vicinity
of the point of its rupture.

The question arises: which threshold function is better for noise filtering. Additionally, a
computational experiment allows us to note the following features of the threshold functions hard and
soft:

- the hard function acceptably works at a low noise level, when all the noise coefficients of
decomposition by modulo less than the threshold T and they are respectively zeroed, and all
informative coefficients exceed the modulus threshold T and therefore they are stored,;

- the absence of a soft gap in the vicinity of point a (see Fig. 2) to some extent prevents the
appearance of oscillations (Gibbs effect) at special points of the signal. This effect can occur when
using the hard threshold function.

y 'y

Fig.2. Marginal processing functions of transformation coefficients:
a) hard - hard threshold function; 6) soft - soft threshold function.

Reducing the value of the decomposition coefficients by the threshold value, in the case of soft
threshold processing, in General for a large number of signals has a negative impact on the final
assessment of the quality of the recovered signal. Experiments show that a rigid threshold estimate is
more preferable in terms of numerical evaluation of the quality of the recovered signal. According to
research in [4,6,7], in order for the numerical evaluation of the recovered signal to approach the latter
in the case of hard threshold processing in the case of soft threshold processing, it is necessary to
choose a threshold value T equal to half the value of the hard signal processing threshold. It is known
that the main problem of using threshold processing methods is the choice of threshold value.
Typically, the choice of threshold was made using the following expression:

T =6,2In(N).

4)

Formula (4) is written for the case of a one-dimensional signal (in our case, a vibration signal
from a uniaxial accelerometer). The formula uses the following notation: N is the total number of
samples of the processed signal, o is the standard deviation of the noise:
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where M, is the median of the absolute value of the set of coefficients {X}. Since wavelets are widely

used to solve the problem of noise reduction, it is advisable to use them to process the vibration signal
when monitoring the technical condition of the equipment. The results of solving the problem of signal
noise filtering when measuring vibration are shown in Fig.4 (based on Daubechies wavelets). The
results were obtained by modeling the filtering of the vibration signal with a noise component
(Gaussian noise) in the MATCAD package.
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Fig.3. Image of the vibration signal model with noise.

Fig. 3 shows the vibration signal with a noise component. When performing in the MATCAD
[6,7,10] environment of the above simulation, to simulate the vibration signal, a signal of complex
frequency implementation was used. To simulate the noise component, a pseudo-random signal with a
normal distribution law is superimposed on the specified signal.
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Fig.4. The wavelet spectrum of the Daubechies model signal. The results of calculations of the
Daubechies wavelet spectrum are presented in the form of five families of its coefficients.
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Fig.5. Image of the processed input signal without noise, that was eliminated as the result of
the inverse wavelet transform.
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Fig.6. Image of the input signal with noise (Si) and the purified signal (Ci), without the noise,
that was eliminated as the result of the inverse wavelet transform.

—4 -2 0 2 4

Fig.7. Image of the input signal without noise (Ni) and the cleared signal (Ci).

Fig. 7 shows a comparison of the playback accuracy relative to the initial signal of the
simulation of the vibration signal Ni (signal Si without noise component) and the signal recovered
after filtering from noise.

As can be seen from the figure, in general, the restored signal, with small differences, fully
reproduces the useful signal in both amplitude and frequency implementations.

Conclusion. In this paper, the simulation of vibration signal filtering from noise with the
normal distribution law in the MATCAD package is performed. The obtained results show that the
wavelet transform method allows to solve the problem of filtering the vibration signal from noise. The
obtained results evidence to the prospects of the developed method and its advantages in comparison
with the hardware solution of the filtering problem. It can be concluded that in many cases this method
can be used in the processing of vibration signals obtained by autonomous recording devices in
conditions of increased interference from the environment.
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A. Ilepenepko .
BUKOPUCTAHHA BEUBJIET HEPETBOPEHHSI 1151 BUTAJTEHHSI IITYMOBOI
CKJIAJIOBOI 3 BIBGPOCHUT'HAJTY

Cmammst 00CniOACYE BUKOPUCTNAHHS 8eliBNIemi8 OJisl YCYHEHHSL UMY 810 8UMIPIOBATLHO20
sibpayitinozo cuenany. Busnaueno, wo eetignemu 00ope npucmoco8ani 0 aHAli3y CUSHANIG, 0151 Y020
BANCIUBULL NPUHYUN NPUYUHHOCTII: 8eligllemu 30epiealomb HaNpsaMOK YAacy i He CIMEopIoOmb
napasumapHux 6mpy4ans Migc MUHYIUM i maubymuim. Pospobaeno kpumepii eubopy ananimuunoeo
selisiemy 6 3aNeACHOCII 8i0 M020, SKY IHGOpMayito cio UMSSHYMU i3 CUSHATLY, MA HEeOOXIOHOCMI
OiNbUW NOBHO BUSHAYUMU A NIOKPECIUMU Ne6HI 6l1ACMUBOCHE AHANI308AH020 cucHaLy. /s obpooKu
Oanux cueHay siopayii npononyemoca sukopucmosysamu getignemu Daubechies. Imimayis
Ginempayii 8iOpayitiHux CueHALi6 8i0 uymy 3a HOPMATLHUM 3AKOHOM PO3NOOLTY GUKOHYEMbCSL 6
naxemi MATCAD. /[osedero, ujo memoo getigiien-nepemeoperts 00360JA€ SUPIiUmMu npooiemy
Ginempayii 8idpayitinoco cueHany 8i0 uymy npu 00pooyi 8iOpAYItIHUX CUSHANIE, OMPUMAHUX
ABMOHOMHUMU PEECTPYIOUUMU NPUCTHPOSMU, 8 YMOBAX NIOGULYEHUX NEePEeUKO0 810 HABKOIULUHBO2O
cepedosuwya. Ompumani pe3yromamu cei04amv npo NepCnekmub po3podIeH020 Memoody ma uo2o
nepesazu 8 NOPIBHAHHI 3 ANAPAMHUM BUPIUUEHHAM NPobiemu (itompayii.

Knrouoei cnosa: siopayiiini cuenanu, wymosa cKiadosa CUSHAILY, 8eUsIem-NnepemeopeHHs,
nOPO208i Memoou 0OPOOKU CUCHATIS.

A. Ilepenepko

HCIIOJIb30BAHUE BEVBJIET IPEOBPA3SOBAHMUS JUIS1 YIAJEHUS ITYMOBON
COCTABJISIIOILEN C BUBPOCUTIHAJIA

B cmamve ucciedyemces ucnonvzosanue 6etignemos OJisi YOANCHUS WYMA U3 UBMEPIeMO20
cuenana subpayuu. Onpedeneno, Wmo eeleiemvpl XOpouto a0anmupo8arvl OJisi AHAIU3A CUSHALO08, OJis
KOMOPO20 6ANCEH NPUHYUN NPUMUHHOCIU. Gelelembl COXPAHSIION HANpAasleHue epeMeHu U He
€030aiom Napazumublx NOMex Mexcoy NpoulibiM u oyoyuum. Kpumepuu evibopa ananumuueckoeo
selierema OvLIU paspabdomanvl 6 3A6UCUMOCHU OM MO20, KAKAs UHGOpMayus OONXNCHA Oblmb
usgNeyeHa U3 CUcHald, u om HeobOxooumocmu 6onee NOIHO UOEHMUDUYUPOBAMb U NOOYEPKUBAMD
onpedenennble ceolicmea anatusupyemoeo cuenana. llpeonazaemes ucnonvzoeams setigiemst JJobeuu
07151 06padbomku dannvix cueHana euopayuu. Modenuposanue urbmpayuu UOPOCUSHAA OM UWYMA C
HOPMANbHLIM 3aKOHOM pacnpeodenenus evinonnsiemes 6 naxeme MATCAD. Jloxazano, wmo memoo
selisniem-npeodpaz06anus. NO360Jslem pewums 3a0ayy QUIbmMpayuu 6ubPOCUSHAIA OM WYyMA Npu
0bpabomke SUOPOCUSHANIO8, NOJYVHEHHBIX AGMOHOMHBIMU PESUCPUPYIOWUMU  YCMPOUCMEAMU &
VCA0BUSIX NOBLIUECHHBIX NOMEX CO CHOPOHLL OKpydscaiowel cpedsl. llonyuennvle pe3yibmanmul
CBUOEeMENbCMBYION O NEePCNEeKMUBHOCMU  PA3PADOMAHHO20 Memood U €20 NPeuMyujecmeax no
CPABHEHUIO C ANNApPamubIM peueruem 3a0a4u Quibmpayuu.

KiroueBble CJIOBA: GUOPAYUOHHbIC CUSHAbI, UWYMOBAS. COCMASTAIOWAS. CUSHANA, Gelsien-
npeobpaz08anus, NOPO208ble Memodvl 00PAOOMKU CUSHATOB.
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