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ON APPLICATION OF A SIMPLIFIED TWO-DIMENSIONAL MODEL OF FORCED
OSCILLATIONS TO THE POWER ANALYSIS OF FLAT STEELWORKS

Abstract. An analysis of existing methods of power calculation of steelworks under the influence
of forced oscillations is performed. When considering the forced oscillations of flat steelworks, two-
dimensional models are used, which are complex for wide practical use. Their implementation
requires in-depth mathematical training and complex computational tools. The aim of this work is to
develop a simplified two-dimensional mathematical model of forced oscillations of flat steelworks with
following use of this model in power calculations. The mathematical model proposed in this paper
describes oscillations of a weightless steelwork with a point mass of simultaneous action in vertical
and horizontal harmonic disturbing forces acting on them. The model is based on the method of
forces, establishes a link between the movements of the steelworks and the forces that act on them.
Together with the model the dependences for calculating the resonant frequencies of the oscillatory
system are obtained. The performed developments allow to determine the dynamic characteristics of
the oscillatory process and to calculate a steelwork strength, stiffness and stability.

Keywords: plane steelworks, forced oscillations, mathematical model, resonant frequencies,
power calculations.

Introduction and statement of the problem. Scientific and technological progress requires the
designers to apply increasingly sophisticated methods of calculation regarding the strength and power
parameters of the products created. Such requirements are most relevant for structures subject to
external loads variable in time.

In industry rod structures are considerably widespread, such as beams, flat frameworks and
steelworks, employed under conditions of forced oscillations, i.e. arising from the action of so-called
disturbing forces. Most often the source of such forces is the work of various equipment installed on
these structures — pumps, presses, pile drivers, etc. The disturbing forces result from the movement of
the center of mass of such equipment and they are of periodic, often harmonious, nature.

Constructions under forced oscillations undergo additional (dynamic) forces and stresses, which
in some cases reach considerable quantities. Hence is the importance of adequate consideration of
such structures in power calculations.

As a rule, forced vibrations of a weightless beam with a fixed point mass are analyzed in the
educational and methodical literature on the resistance of materials [1-3]. This (simplified) model of
the oscillatory system is a single-dimensional one. In spite of its simplicity, it provides acceptable
accuracy of power calculations for general practice. Along with it, more sophisticated one-dimensional
models are also offered in university courses of resistance of materials and structural mechanics,
which take into consideration point mass and beam weight [4-6]. However, the proposed calculation
methods for widespread practical application are quite complex, since they require advanced
mathematical training, which usually goes beyond the curriculum of higher engineering institutions.

Forced vibrations of flat frameworks and steelworks are generally considered in University
courses of construction mechanics [7-13]; wherein complex two-dimensional models are used, which
are also not acceptable for widespread practical use. This requires simpler calculation technigques
which do not require special mathematical training but still provide acceptable practice for accuracy.

Such a two-dimensional model of forced oscillations was created by the authors of the paper
and adapted to calculations of the strength of flat frames [14, 15].

Results of the work. In this model the oscillating mass and oscillation source is a statically
unbalanced rotor of an electric motor, but other options are also possible.

When operating such an engine a centrifugal force of inertia H arises, which is a disturbing
force of oscillation. It rotates with the rotor of the engine with circular frequency w. In addition to it

the force of gravity mg and the inertia forces @, and @, as well as the resistance of the medium F,

and F, and reaction of the elastic element R, and R, influence the oscillating mass m. Fluctuations

occur around the position of static equilibrium — point O (Fig. 1).
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Figure 1. Scheme of oscillating mass load

According to the D'Alembert principle [4], the oscillating mass at any time is in kinetostatic
equilibrium under the action of the force applied to it (see Fig. 1). The vector equation of this
equilibrium is:

Mg+R +R,+®& +d,+F+F,+H=0. 1)
The differential equations of motion of an oscillating mass are transformed projections on the axis of
coordinates of the vector equation (1):

M-y +u- 3+ f,(3.2)=mg+H-cos(w-1), 2
m-Z+u-z+ f,(y.z)=H-sin(w-1), ©)
where 'y and Z are current projections of the velocity of the oscillating mass on the corresponding

axes of coordinates;
y and Z are current projections of the acceleration of the oscillating mass on the

corresponding axes of coordinates;

u is the coefficient of the medium resistance;

t is the time from the start of the movement, i.e. the exit of mass m from the position of static
equilibrium;

' ' 521 5221_522'511 521

f,(y.z)=R,= P, = y2521 z 511;
521 - 522 '611
where P; and P, are the forces with which the oscillating mass influences on the elastic element;

011, 022, 012=0,1 are peculiar stiffness indices of the elastic element; for the frameworks, they
are determined by Vereshchagin's rule or by the universal formula of multiplication of trapeziums
(formula of extreme ordinates), using the corresponding graphs of bending moments [16].

Differential equations (2) and (3) require implication of any of the existing computing systems
for their integration. The simplest and most acceptable in this case is the Mathcad system, which
allows performing all the necessary calculations. To integrate these equations, it is convenient to

accept zero initial conditions, as well as the condition ®, = ®, i.e. consider the period of acceleration

of the motor to be absent.
The numerical integration of these equations determines implicitly the laws of motion of

oscillating mass y =y(t) and z=z(t), and through them, the laws of change of forces of the

()

action of oscillating mass on an elastic element P, =P, (t) and P, =P, (t) and their maximum values,
which further serve to evaluate the strength of the structure.
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The created model also allows to determine the circular frequencies of natural oscillations of the
structure, which is called resonant frequencies for brevity. They are calculated by the formula:

J2

@z = 2 2
\/m ’ (511 +522) * m'\/(511 +522) _4‘(511 '522 _512)

Apparently, application of the outlined model is not limited to frameworks. This model is a
versatile one and is fundamentally acceptable to any of the oscillating systems with point mass and
non-weighted elastic element of arbitrary construction with two degrees of freedom.

The purpose of this work is to adapt the model to the power calculations of flat steelworks under
conditions of forced oscillations.

The main difference between steelworks and frameworks is that the rods in the steelworks are
connected to each other in the so-called hubs by means of hinges, and the frameworks are rigidly
fastened, making the rods of the steelworks stretch and contract, whereas the frameworks (if
longitudinal forces not taken to attention) are under conditions of flat bending. Therefore, the
steelworkes stiffhess indices, in contrast to those of the frames, in which these indices depend mainly
on bending moments, are determined by the longitudinal force N.

The differences of steelworks should also include the possibility of longitudinal bending in
compressed rods, that is, loss of stability, which inevitably renders the structure unusable for further
use.

(6)

Dependencies arising from Vereshchagin's rule for longitudinal force diagrams are used to
determine steelwork rigidity [16]:

511: L ) le'éi;

E'F i=1

1 0\
0y =—— 3 (N'V 0. 7
2 g ) )
by =bp=— SN N0
12 21 EF — i i i

where i is the rod’s number;
n is the number of rods in the steelwork;

N. is the force in the i-th rod from the action of vertical unit force P;=1, which is applied to

the steelwork at the location of the oscillating mass;
N_i' is the force in the i-th rod from the action of horizontal unit force P,=1 applied to the

same place;
¢; is the length of the i-th rod;
E is elasticity modulus of rod material;
F is the cross-sectional area of the steelwork rods.
Note that steelworks located in the vertical plane and having the same cross-sectional shape and
cross-sectional dimensions are considered here.

To determine the values N, and N, it is necessary to pre-calculate the reference reactions of

the steelwork, and then apply the cut-off method or section method proposed by Ritter [7].

Having identified the pair of forces thus indicated in each of the rods and having analyzed the
combinations of their values, it is necessary to identify the rods which are potentially dangerous from
the point of view of compression strength and resistance. This is where attention should be paid to at
the appropriate stages of power calculations.

The specificity and details of testing and design calculations of flat steelworks for strength and
stability using a simplified two-dimensional forced vibration model will be illustrated by the following
examples.

Example 1. Ignoring the resistance of the medium, verify the strength, stability and resonance
of a flat steelwork (Fig. 2) made of pipes with an outer diameter d = 100 mm and a wall thickness
s=5 mm. Pipe material is steel St.3, [¢] = 160 MPA. The mass of a static unbalanced electric motor
installed on the steelwork is m = 2000 kg, its circular speed w = 31.4 s (300 rpm), the modulus of the
force generated is H = 0.3 mg.
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Figure 2. Scheme of the steelwork

Solution
1. The number of rods and nodal points are denoted on the scheme of the steelwork, the length
of the rods are determined: ¢, =/, =2m, (,=/(,=(, =0, =141m, (,=(, =/, =1m (Fig. 3).

Figure 3. Diagram for determining the force at the rods of steelworks from the action of a single force
P1=1

2. Vertical single force P;=1 is applied to the steelwork at the location of the engine (hode D)
and the reaction of the steelwork R, and Rg are determined from this force (see Fig. 3):

P-2 1.2
dDM,=-P-2+R;-4=0; Ry= 14 =T=0.5;
P-2 1.2
M,=P-2-R,-4=0; R,=-1—==—=05.
z B 1 A A 4 4
Verification: ZPy =P —-R,—R; =1-0.5-0.5=0. Responses are correct.
— . — R 0.5
P,=-Ry—N,-sin45°=0; N,=-—L—-=-—"=-071;
2P =R =N, * sinds® 071

D> P,=—N,;-N,-c0s45° =0; N,=-N,-c0s45°=0.71-0.71=+0.5.
Signs indicate that the rod 1 is stretched and the rod 2 is compressed.
4. Consistently transfer to nodes C, D, L, A and similarly determine all other forces:

N, =+0.71; N, =—1; N, =+1; N, =-1; N, =+0.71; N, =—0.71; N, =+0.5.
5. For verification, equilibrium of the node K is considered:
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3P, =N, — N, -sin45° - N, -sin45° =1-0.71.0.71-0.71.0.71=1-0.5- 0.5 = 0;
3P, =N, - N, +N,-c0s45° — N, -c0s45° = 0.5-0.5+0.71-0.71-0.71-0.71=
=0.5-0.5+0.5-0.5=0.

Forces in all rods are found correctly.

6. When horizontal unit force P, =1 is applied to the steelwork at the location of the engine
(node D) and from the reaction of the steelwork and the force in the rods is determined in the same
way (Fig. 4).

Figure 4. Scheme for determining the force in the steelwork from the action of a single force P,=1

This time it is: ya=0.25; zx=1; R; =0.25; Wl’:+0.25; N_2’=—0.35; N_§:+0.35;

N, =-0.5; N, =0; Ng =+0.5; N; =-0.35; N; =+0.35; N; =+0.75.

7. The obtained values of internal forces are presented in Table 1 as well as the steelwork
rigidity is determined.

Table 1 shows that the value of d;, is positive. This indicates that the directions of unit force
P,=1 and the z axis are chosen correctly [14].

8. Analyzing the obtained data (see Table 1), we see that the largest force by the module during
engine operation takes place in the rod 4, which is dangerous in terms of strength. The law of changing
these forces is:

N, (t)=N,-R(t)+N;-B,(t)=-1-B (t) - 0.5- B, (t), (®)
where Py(t) and P,(t) are the laws of change of forces P, and P,, which are implicitly determined by
the computer.

9. The data obtained (see Table 1) indicate that the rod 4, which has the largest compressive
forces, and the rod 2, which compression forces are slightly smaller and the length is longer are
potentially dangerous from the point of view of loss of stability.

The law of change of force in the rod 2:

N,(t)=N,-P(t)+N;-P,(t)=—0.71-P,(t)-0.35- P, (). 9)

10. The cross-sectional area of the cross sections of the rods of the steelwork is determined:

2 2
AL {1-(1—2-% } (10)
4 d

2 2
Fo31401 -{1—(1—2-—0'0025j }:1.49-103 m?.

4
Table 1
Determination of steelwork rigidity indicators
Rod - T —\2 —\2 — —
rumper | No | OND [ gm | (NG g m (N 2o | NN £
1 +0.5 | +0.25 2 0.5 0.125 0.25
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2 -0.71 | -0.35 | 141 0.711 0.173 0.35
3 +0.71 | +0.35 | 141 0.711 0.173 0.35
4 -1 -0.5 1 1 0.25 0.5
5 -1 0 1 1 0 0
6 +0.5 | +0.75 2 0.5 1.25 0.75
7 -0.71 | +0.35 | 1.41 0.711 0.173 -0.35
8 +0.71 | -0.35 | 141 0.711 0.173 -0.35
9 -1 +0.5 1 1 0.25 -0.5
> =6.844 Y =2.442 z=1
511:% 522:% 512:521:E_:::

11. The expressions for steelwork rigidity indices are introduced into the calculation program

[14] (see Table 1), as well as the law of change of forces (6) and the value of F, so we obtain for the
rod 4:
Omin = —2.24-10" Pa = — 22.4 MPa, w, = 145.27 s, w, =258.751 s * (Fig. 5).
Similarly for the rod 2:
Omin = — 1.589-10" Pa = -15.89 MPa, w; = 145.27 5™, w, = 258.751 s ™.
12. The rod 4 is verified for compliance with the strength condition:

|G in| <[0]- (11)

In our case |cs |= 22.4 MPa < [G], so the strength of the rod 4 and of the steelwork as a

whole is ensured.
13. The flexibility of the compressed rods is defined:

A= 'u_'g’ (12)

where u is the cast ratio of the rod;
¢ is the length of the rod;
imin IS the minimum radius of inertia of the cross-section of the rod.
Since the ends of the rods in steelwork are hinged, n=1 [1, p.504]. The cross section of the

rods is circular, therefore:

4 4
imin=ix=iy=iax; iax= ‘];ax’ ‘]axzn-d . 1_(1_2£j .
\j 64 d

With this in mind:

4 4
Jax:3.14 01" 1- 1_2_0.005 ~1.687-10° m*:
64 0.1

(13)

—6
LO8729 " _ 0.084m.

1.49.10°3

So for the rods 4 and 2, respectively, there is:
0.034

P Y
0.034

Iax -
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6.844 2.442 1.0

8 9 9 9

811 =2297x 10 322 =8195%x 10 321 =335 x10 312 = 3356x 10

s 822 - 312 |, 11-522 - 812:821
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i 521 H 311

T(811:622 - $12-821)-m ©(811:622 - $12-821)-m

Given

y'(t) —ay(t) + b-z(t) = E-cos(u.}-t) +d z'(t) — k-y(t) +n-z(t) = E-s.in(w-t)
m m

y0)=0 y(©=0 Z0)=0 2(0)=0

(yj = Odesolv{(yj ,t,4:| t = 0,0.002..4
z )

LA y(©-821 - 20)-811 $22 y(£)-821 — Z(t)-811

Pl(t) == m-g 3 P2(t) == 5
021 §;1? o281 92 §21° — 522.511
N(t) = —P1(t)-1 — P2(1)-0.5
PRIGING=T  gd i el @ Yi=y(t)  Zi= ot)
PPl; := P1(4 PP2; := P2(t;
i (1) i (ti) NNj = N(ti)
Nmax := max(NN) Nmax = —5.901 x 103 Nmin:= min(NN) Nmin = —-3.338 x lO4
omin:= N?m omin= —2.24x 107
Rl =g ﬁ
e = > WR1 = 14527
\/m-(Sll +822) + m-\/(éll +822)" — 4.(511-522 - 312 )
V2
wR2 = wR2 = 258.751

Jm-(511 +822) —myf (311 + 522)° — 4 811822 812%)

Figure 5 - Dynamic calculation of the rod 4

Rods 4 and 2 are verified for stability.

The stability condition has the form [4]:

|Gmin| = (P'[G]

115

(14)

where ¢ is the coefficient of reduction of the basic allowable stress, which depends on the flexibility of

the rod A.

In the corresponding table [1, p. 508] we find for the rod 4: ¢=0.941, and for the rod 2: ¢»=0.916.
Then the allowable stresses for the stability of the rods 4 and 2 respectively are:

Comparing the value of |o

¢-[c] =0.941-160 =150.56 MPa,
¢-[c]=0.916-160 =146.56 MPa.

min

condition of stability of these rods and the steelwork as a whole is fulfilled.

15.

Resonance verification of the steelwork.
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Resonance arises from the coincidence of the circulating frequency of the disturbing force and
the resonant frequencies of the structure: @ = w1, Or @ = w,. In our case, ® = 31.4 st @y =145.27 s,
o, = 258.751 s, so there is no resonance found.

There is a point of view [1, etc.] that in order to reliably prevent resonance, the value « must be
at least 30% less than the value w;:

®0=<0,7m, (15)

Let's verify this condition too.

In our case: 0.7w; = 0.7 - 145.27 = 101.689 s™, which is greater than . So this condition is also
fulfilled. Verifying this condition with respect to w, makes no sense, since w;> .

Thus, all the conditions of the task are fulfilled.

Finally, we compare the results with those published in [14], which gives an example of a
similar calculation of the same steelwork using a one-dimensional model that takes into account only
vertical oscillations. In that example, the resonant frequency is up to 46.577 s*, and the highest
modulus compression stresses in the rod 4 are 20.4 MPa.

As we can see, the one-dimensional model significantly reduces the results of the calculations,
especially regarding the determination of the resonance frequencies.

Example 2. Ignoring the resistance of the medium, it is necessary to select the required cross-
sectional dimensions of pipes with a ratio s / d = 0.2 for the steelwork shown in figure 2. Pipe material
is steel St.3, /o] = 160 MPa. Weight of statically unbalanced electric motor installed on the steelwork
m = 1400 kg, its circular speed w = 104.667c™ (1000 rpm), the module created by it disturbing force
H = 0.3mg. Determine the resonant frequencies of the design.

Solution
1. 9. Paragraphs 1 to 9 are the same as in Example 1.

10. From formulas (8), (10), (11) and the conditions of example 2, the values of F, Ju, i, and 4
are expressed through the outer diameter of the pipe d:

2 2 2
p_md .1_(1_2&} _314-d° [1-(1-202)|=0502-0% (16)
2| d 4
s T 4 4
J,== . 1_(1—2&) =M.[1_(1-2-0.2)4]=0.043-d“; (17)
64 | d 64
4
o=y 223292, (18)
0.502-d
PSS VY I (19)
i, 0.292-d d

11. From the condition of strength at static loading of the steelwork by the weight of idle
engine, the desired value of d is determined:

[N|,.. 'M9 _1-1400-9.81

F=0.502-d°> o] 160 =85.8mm?;
o
d> 858 =13.1mm.
0.502

From the normal series of linear dimensions (Ra 20, GOST 6636 — 69) [15] we accept: d = 14
mm. From this a dynamic calculation starts, which consists of successive strength and stability
verifications of the rods 4 and 2 at values d > 14 mm according to the method described in example 1,
taking into account expressions (16) — (19). The results of the dynamic calculation are presented in
Tables 2 and 3.

As can be seen from Tables 2 and 3, strength and durability of both rods, as well as of the
steelwork as a whole, is provided by pipe 40x8 mm. In this case, the resonance frequencies are:
®,=127.481 s, ©,=227.065 s, which is quite far from the resonance. The values d=32 mm and
d=18 mm are the closest to it, at which the stresses in both rods are the greatest.
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Table 2
Results of dynamic calculation of the rod 4
d, | P |Nminn|,(t) ammlil R O'Sco-[oj, e %
mm | mm N MPa A 0] MPa S S
14 98.4 | 18660 | 189.7 | 245 | <0.19 | <30.4 | 44.618 | 79.473
16 |128.5| 22950 |178.6| 214 |<0.19 | <30.4 | 50.992 | 90.826
18 | 162.6 | 61880 | 380.5| 190 | 0.210 | 33.6 | 57.366 | 102.179
20 | 200.8 | 30790 | 153.3|171|0.257 | 41.1 | 63.740 | 113.533
22 | 243.0 | 25690 | 105.7 | 156 | 0.302 | 48.3 | 70.114 | 124.886
25 | 313.8 | 27750 88.4 | 137 | 0.372 | 59.5 | 79.675| 141.916
28 | 393.6 | 38760 98.5| 122 | 0.440 | 70.4 | 89.237 | 158.946
32 | 514.0 | 181600 | 353.3 | 107 | 0.544 | 87.0 | 101.985 | 181.652
36 | 650.6 | 67570 | 103.9 | 95 | 0.645 | 103.2 | 114.733 | 204.359
40 | 803.2 | 41400 515 |86 |0.714 | 114.2 | 127.481 | 227.065
Table 3

Results of dynamic calculation of the rod 2

N(®) = — P1(t) - 0.71— P,(t) - 0.35

d. | F 2 | INmingl, | [miny], ofo], | Ok Ny
mm | mm N Mpa A 0 \Pa s s

14 | 984 13190 | 134.1 | 345 |<0.19 | <304 | 44.618 79.473
16 | 128.5 16170 | 125.8 | 302 | <0.19 | <30.4 | 50.992 90.826
18 | 162.6 43110 | 265.1 | 268 | <0.19 | <30.4 | 57.366 | 102.179
20 | 200.8 21620 | 107.7 | 241 | <0.19 | <30.4 | 63.740 | 113.533
22 | 243.0 18140 747 | 220 | <0.19 | <30.4 | 70.114 | 124.886
25 | 313.8 19660 62.7 | 193 | 0.204 | 32.6 | 79.675 | 141.916
28 | 393.6 27470 69.8 | 172 | 0.254 | 40.6 | 89.237 | 158.946
32 | 514.0 | 128800 | 250.6 | 151 | 0.317 | 50.7 | 101.985 | 181.652
36 | 650.6 47910 73.6 | 134 | 0.384 | 61.4 | 114.733 | 204.359
40 | 803.2 29360 36.6 | 121 | 0.445 | 71.2 | 127.481 | 227.065

Conclusions. An advanced technique of power calculations of flat steelworks is developed,
based on previously created and implemented in Mathcad system of a simplified two-dimensional
model of forced oscillations, which significantly improves the accuracy and reliability of
determination of dynamic forces, stresses and resonance frequencies in comparison with the common
in practice model that takes into account only vertical fluctuations, ignoring horizontal ones.

The developed technique allows to determine the maximum dynamic forces and stresses in an
oscillating steelwork, to calculate its resonant frequencies, to verify the fulfillment of the conditions of
strength and stability, to select the required cross-sectional dimensions of the rods in order to
guarantee these conditions.

The methodology is illustrated by the examples of test and design calculations and can be
recommended to students and manufacturing professionals for use in educational and engineering
practice.

In the future, it is appropriate to create a cross-platform computer program that would cover all
stages of the calculation by the developed method, and thus simplify and accelerate it as much as
possible.
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Xoaoaunsik 10.C., ITonnecuuii C.B., Kanoposuu C.B., Koporenko €./1.
JloHOachKa neprkaBHa MaIIMHOOY TiBHA aKafeMis
PO 3ACTOCYBAHHSA CIIPOIIEHOI IBOBUMIPHOI MOJIEJII BUMYIIIEHUX

KOJIMBAHB JIO CUJIOBOI'O AHAJII3Y IVIOCKUX METAJIOKOHCTPYKIIN

Bukxonano ananiz ichyrouux memooig cunoso2o po3paxyrky gepm, sxi nepedysaoms nio Oicto
suMyweHux Konugamv. Ilpu po3zensaoamnHi UMyWeHUux KOAUBaHb NIOCKUX (PepM 3acmocO8YIOmbCs
0B80BUMIDHI MOOeni, SIKI € CKIAOHUMU Ol WUPOKO20 NPAKMUYHO20 euKopucmanHa. Ix peanizayis
nompeoye no2iuOIeHOi MAMeMamuyHoi ni020moeKU i CKIAOHUX 0OYUCTIO8ANbHUX 3ac00is. Memoto
0aHoi pobomu € po3podKa CnpoweHoi O0BOMIpHOI MameMamuyHoi MoOeni GUMYWIEHUX KOIUBAHb
NAOCKUX (hepM 3 HACMYNHUM 8UKOPUCIMAHHAM Yi€i MoOeni 6 ix cunosux pospaxymkax. Mamemamuuna
MoO0elb, Wo 3anponoHO8ara 6 pobomi, ONUCYE KONUBAHHS HeBa20MOI ghepmu 3 MOUKOBOI0 MACOI0 NpU
O0O0HOYACHTI Oii HA HUX 8EPMUKANBLHOI Ui 2OPU3OHMANLHOI 2APMOHINIHUX 30yprolouux cul. Y ocnosy
MoOeni NOKNaoeHUtl Memoo Cull, Wo 6CMAHOBNIOE 36 A30K nepemiujeHv epmu 3 cunamu, aKi Ha Hei
Oitomb. Pazom 3 Mooennio ompumani 3a1eicHoCcmi 05t 00YUCTIEHHS PE3OHAHCHUX YACHOM KOAUBANbHOT
cucmemu. BuxkoHnamni po3poOxu 003601810mb 6UHAYAMU OUHAMIYHI XAPAKMEPUCUKU KOIUBATLHO2O
npoyecy i po3paxogysamu pepmu Ha MiyHICMb, HCOPCMKICMb MA CMIUKICMb.

Kniouoei cnoea: nnocki gpepmu, eumyuieni KOIUSAHHA, MAMEMAMUYHA MOOENb, PE3OHAHCHI
YACMomu, CUI08i PO3PAXYHKU.

Xogoausik F0.C., ITonnecuniii C.B., Kanoposuu C.B., Koporenko E.JI.
Jlonbacckas rocyiapCcTBEeHHAs! MAIIMHOCTPOUTENBbHAS aKaJIeMHUS
O NPUMEHEHHWHU YITPOIIEHHOM JBYMEPHOM MO/IEJIN BHIHY KJIEHHBIX
KOJEBAHUI K CHJIOBOMY AHAJIM3Y IIJIOCKUX METAJIJIOKOHCTPYKITAM
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Buvinonnen ananuz cywecmsyowux memooos cCunooco paciema @epm, HAX0O0[uuxcs noo
Oeticmeuem 8blHyHCOeHHbIX Konebanull. Tlpu paccmompenuu 8biHYHCOEHHbIX KOeOanull NA0CKUX hepm
NPUMEHSIOMCSL O8YMEPHble MOOEU, KOMOpble SAGNAIOMCS CLOACHLIMU O WUPOKO20 NPAKMUYECKO20
ucnoavsosanus. ILlenvio Oanmoti pabomuvl sengemcs  paspabomxa  YNPOWEHHOU  O8YXMEPHOU
MamemMamuieckou  MoOenu  BbIHYIHCOEHHbIX  KONeOaHutl NAOCKUX ¢epm ¢ NOCIeOyrouuUM
UCNOAL30BAHUEM IMOU MOOEIU 6 UX CUL08bIX pacuemax. Mamemamuueckas MoOenb, NPEONOJNCeHHAs 8
pabome, onucviéaem KOIeOAHUSI HEBECOMO20 (hepmMbl C MOYEYHOU MACCOU NpU OOHOBPEMEHHOM
Oeticmeuy Ha HUX 6EPMUKANbHOU U 20PUBOHMATIbHOU 2APMOHUYECKUX BO3MYWalowux cul. B ocrnosy
MO0 NONOINCEH MEMOO CUIL, YCMAHAGIUBAIOWULL C653b NepeMeujeHUll (hepmbl C CUTLAMU, KOTOpble HA
Hee Oeticmgyiom. Bmecme ¢ Mooenvio nonyyenst 3a8Ucumocmu 05l BbI4UCTEHUSL PE3OHAHCHBIX YACHOM
KonebamenvHou cucmemvl. Buinonnennvie paspabomku no3eonsiom onpeoderumv OUHAMUYECKUe
Xapakxmepucmuky KonebamenbH020 npoyecca u paccuumuléams Gepmuvl Ha NPOYHOCHIb, HCECMKOCTDb
U ycmou4usocmo.

Kniouesvie cnosa: niockue pepmul, 8bIHYIHCOCHHbIE KONCOAHUS, MAMEMAMUYECKAS MOOENb,
PE30HAHCHbBIE YACMOMbL, CUTOBbLE PACYENDL.
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