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UNSYMMETRIC DRY FRICTION FOR MODELS OF SURFACE CLEANING

1B

V mpoiieci ouuIIeHHs MOBEpXHi BiAOyBaroThCs pi3Hi HemiHiiHI edektr. Cepen pi3HHX HeMiHIHHHUX e(eKTiB,
o0 BiIOYBAarOTHCS B TaKHX CHUCTEMaX, BAKJIMBE 3HAUCHHSA Mae cyxe TepTsa. TakuM YMHOM, psAA pPoOiT MPHCBSIYCHO
JOCTIDKEHHIO [BOTO e(ekTy. VY YHCIOBHX 3alpOLICHHSAX 3a3BHYall BHKOPHUCTOBYEThCS JESIKE HAONMIKSHHS
nepexigHuX 00aacTeld MK PiI3HUMHU NOCTIHHUMHA 3HAYEHHAMH CHIIH cyXxoro Tepts. Lle n1o3Bonse HabIM3uTH HeMiHiiHI
e(eKTH, 0 MAIOTh Miclle B TaKMX chUcTeMax. [y mpencraBieHHs JesKuX i3 IUX e(eKTiB 3alpornoHOBaHA MOJEIb
HECUMETPUYHOTO CYXOro TepTs B LIl poOOTi.

JlocnikeHa MOJIENb Ma€e OJIMH CTYIiHb CBOOOM 1 BKITIOYA€ KOHKPETHHI TUI HeliHiiiHOCTI. BiH nependavae
BUKOPHCTAHHS BEJIMYMH 3 IONEPEAHHOT0 MOMEHTY 4Yacy Ta JIOTIYHHMX orepamiil «i» i «abo». [leranpHO ommcaHa
YuceJbHA IPOIeypa JOCHIIKEHHS IBOro sBHIIA. IIpencraBieHi Ta NpoaHai30BaHi pe3yibTaTH PO3pPaxyHKIB 3a
PI3HUMH MapaMeTpaMH AOCIiIKYBaHOI JTUHAMIYHOI CUCTEMH. 3 OTPHMAaHHX PE3yJIbTaTiB BUAHO 3aCTOCOBAHICTH JAHOI
MOJIENi JUTA BIATBOPEHHS AOCIIKYBAaHOTO HENIIHIHOTO SBHUILA.

JocnmimkeHo Bapialito mepeMimieHHS AK (yHKLIT Yacy, 3MiHy MBHAKOCTI K (yHKOIl wacy, Bapiariro
MIPUCKOPEHHS SK (PYHKILIO Yacy, Bapiamito MBUAKOCTi, HOMHOKEHY Ha IPUCKOPEHHS K (QYHKIIIO Jacy.

HaBezneHo Bapiarii BeJWYHH, IO BH3HAYAIOTh HECHMETPUYHY CHIIy CyXoro Tepts sK (yHKmii wacy, Tak i
(byHKUIT IIBUKOCTI.

JociimpkeHo ysBIeHHS y (a30Bii IUIOMMHI: MBUAKICTH SIK (YHKIIS IepeMillleHHs, IPUCKOPEHHS K (QYHKILs
LIBU/IKOCTI, IIBUJIKICTh, TOMHOXEHA Ha TIPUCKOPEHHS SIK QYHKIIiS epeMilieHHs.

JocimKeHo Tpy MUPUHE 000X B3a€EMHO PIBHUX MEpEXigHUX oOnacteil. JletanbHo mpeacTaBieHi pe3ylbTaTy,
OI0 TPEACTABISIOTh JAWHAMIYHY TIOBENIHKY aHAlli30BaHOI CHUCTeMH. BIUIMB MMpWHHU TepexifHuX obiacteit
CIIOCTEPITaeThCs B MPEACTABICHUX TpadiuHUX pe3ynbTarax.

3anponoHOBaHa MOJENb HECHUMETPUIHOTO CYXOT'O TEPTS 3aCTOCOBYETHCS SIK YACTHHA 1HIIHUX OB CKIAIHUX
MoJIeneil, 110 BUKOPUCTOBYIOTHCS ISl IOCIIIJUKEHHS ITPOLieCy OYMIIEHHS TOBEPXHI.

KorouoBi ciioBa: ouuIeHHs TOBEpXHi, HECUMETPUYHE CyXe TepTs, YUCIOBa MOJelNb, HENiHiiHe sBHIIE,
rpadivHi pe3ynbTaTy.

INTRODUCTION

Surface cleaning is an important engineering problem. In the process of surface cleaning various
nonlinear effects take place. Among the various nonlinear effects taking place in such systems dry friction is
an important one. Thus a number of papers are devoted to the investigation of this effect. In numerical
investigations usually some approximation of the transition regions between different constant values of the
force of dry friction is used. This enables to approximate the nonlinear effects taking place in such systems.
For representation of some of those effects the model of unsymmetric dry friction is proposed in this paper.

The investigated model has one degree of freedom and incorporates a specific type of nonlinearity. It
involves the use of the quantities from the previous moment of time and logical operations “and” and “or”.
Numerical procedure for investigation of this phenomenon is described in detail. Results of calculations for
various parameters of the investigated dynamical system are presented and analysed. From the obtained
results the applicability of this model for reproduction of the investigated nonlinear phenomenon is seen.

Conventional model of dry friction with circular — linear approximation is investigated in [1].
Conventional model of dry friction with elliptic approximation is investigated in [2]. Conventional model of
dry friction with trigonometric approximation is investigated in [3]. Investigations of phenomena in
esentially nonlinear vibrating systems are performed in [4]. Basic engineering problems in which the force of
dry friction is taken into account are presented and investigated in [5].

Important engineering problems of surface cleaning by cavitation bubble dynamics are analysed in [6].
The process of cleaning in food production industry is presented in [7]. Interactions of particles with surfaces
are investigated in [8]. Forces between particles and their mutual interactions are described in [9].
Measurements of adhesion of particles are performed in [10]. Extensive experimental investigations of
particles using atomic force microscopy are presented in [11].
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The proposed model of unsymmetric dry friction is applicable as part of other more complicated
models used for the investigations of the process of surface cleaning.

MODEL OF UNSYMMETRIC DRY FRICTION FOR SURFACE CLEANING PHENOMENA
The dynamical system is described by the following equation:

mX+cX + H +kx = Psin af, Q)

where x denotes the displacement of the analysed dynamical system, m is the mass of the investigated object,
c is the coefficient of viscous friction, H denotes the approximate force of unsymmetric dry friction, k is the
coefficient of stiffness, dot over the variable is used for indication of differentiation with respect to the time
t, P is the amplitude of excitation, w is the frequency of excitation.

The following quantity is defined as:

E, when [X|<A+A,,
A

Ol
Il

—%, when [X|>A+A, and [X|<A+2A,, )

0, when |%|>A+24A,,

where h denotes the coefficient of dry friction, A is the width of the transition between the values of the
force of dry friction, A, is the supplementary width of the transition between the values of the force of dry
friction.

The quantity C is defined as:

_{o, when ((x>0)&(x<x,))v((x<0)&(x>x,)) and [¥> A,

= _ ©)
C, elsewnhere,
where the subscript p denotes the previous value of the corresponding quantity.
Value of the unsymmetric force of dry friction is calculated as:
H=H,+C(x-X,). (@)
Thus the following equation is solved:
mX+(c+C)X+kx=Psinot—H_ +Cx,. (5)

RESULTS OF INVESTIGATION OF THE PHENOMENON OF UNSYMMETRIC DRY
FRICTION

The following values of the parameters of the investigated dynamical system were assumed:
w=1,h=16 m=1 c=0.1, k=1 P=4. Calculations from zero initial conditions were performed. Two
periods of steady state motions were investigated.

Results when A=A, =3.2 were obtained and are represented in Fig. 1.
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Figure 1. Dynamics of the system with unsymmetric dry friction in steady state regime of motion for the case
of wide transition regions

Results when A=A, =1.6 were obtained and are represented in Fig. 2.
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Figure 2. Dynamics of the system with unsymmetric dry friction in steady state regime of motion for the case
of transition regions of medium width

Results when A=A, =0.8 were obtained and are represented in Fig. 3.
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Figure 3. Dynamics of the system with unsymmetric dry friction in steady state regime of motion for the case
of narrow transition regions

Three widths of both mutually equal transition regions are investigated. Results representing the
dynamic behavior of the analysed system are presented in detail. The influence of the widths of the transition
regions is observed in the presented graphical results.

CONCLUSIONS

Development of numerical models for surface cleaning is an important engineering problem. In the
process of surface cleaning various nonlinear effects take place. For representation of some of those effects
the model of unsymmetric dry friction is proposed. Numerical procedure for investigation of this
phenomenon is described in detail. Results of calculations for various parameters of the investigated
dynamical system are presented and analysed. From the obtained results the applicability of this model for
reproduction of the investigated nonlinear phenomenon is seen.

Variation of displacement as function of time, variation of velocity as function of time, variation of
acceleration as function of time, variation of velocity multiplied by acceleration as function of time are
investigated. Variation of the quantities determining the unsymmetric force of dry friction as functions of
time as well as functions of velocity are presented. Representations in the phase plane: velocity as function
of displacement, acceleration as function of velocity, velocity multiplied by acceleration as function of
displacement are investigated.

Three widths of both mutually equal transition regions are investigated. Results representing the
dynamic behavior of the analysed system are presented in detail. The influence of the widths of the transition
regions is observed in the presented graphical results.

The proposed model of unsymmetric dry friction is applicable as part of other more complicated
models used for the investigations of the process of surface cleaning.
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dry friction for models of surface cleaning.

In the process of surface cleaning various nonlinear effects take place. Among the various nonlinear
effects taking place in such systems dry friction is an important one. Thus a number of papers are devoted to
the investigation of this effect. In numerical investigations usually some approximation of the transition
regions between different constant values of the force of dry friction is used. This enables to approximate the
nonlinear effects taking place in such systems. For representation of some of those effects the model of
unsymmetric dry friction is proposed in this paper.

The investigated model has one degree of freedom and incorporates a specific type of nonlinearity. It
involves the use of the quantities from the previous moment of time and logical operations “and” and “or”.
Numerical procedure for investigation of this phenomenon is described in detail. Results of calculations for
various parameters of the investigated dynamical system are presented and analysed. From the obtained
results the applicability of this model for reproduction of the investigated nonlinear phenomenon is seen.

Variation of displacement as function of time, variation of velocity as function of time, variation of
acceleration as function of time, variation of velocity multiplied by acceleration as function of time are
investigated.

Variation of the quantities determining the unsymmetric force of dry friction as functions of time as
well as functions of velocity are presented.

Representations in the phase plane: velocity as function of displacement, acceleration as function of
velocity, velocity multiplied by acceleration as function of displacement are investigated.

Three widths of both mutually equal transition regions are investigated. Results representing the
dynamic behavior of the analysed system are presented in detail. The influence of the widths of the transition
regions is observed in the presented graphical results.

The proposed model of unsymmetric dry friction is applicable as part of other more complicated
models used for the investigations of the process of surface cleaning.

KEYWORDS: SURFACE CLEANING, UNSYMMETRIC DRY FRICTION, NUMERICAL
MODEL, NONLINEAR PHENOMENON, GRAPHICAL RESULTS.
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