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ANALYSIS OF METHODS FOR CALCULATING FRACTAL DIMENSION AS A TOOL FOR
ENHANCING PERFORMANCE AND SAFETY CHARACTERISTICS OF AUTOMOTIVE
TRANSPORT OBJECTS

This paper is devoted to developing a concept for the effective utilization of methods for analyzing and
calculating the fractal dimension of models in two-, three-, and multidimensional spaces aimed at solving practical
problems related to enhancing qualitative characteristics of automotive transport objects, transport infrastructure, and
logistics. The most universal and computationally efficient method for calculating fractal parameters has been
identified, opening new possibilities for optimizing modeling processes of real systems and significantly improving
the quality of their analysis and forecasting.

Contemporary applied tasks, including those in transportation technologies, are actively progressing towards
investigating processes within multidimensional spaces related to the dynamics of chaotic systems behavior. Searching
for universal methods and algorithms to calculate fractal parameters for multiparametric object models within
arbitrary-dimensional spaces, particularly those changing their properties over time, requires additional research for
generalization.

The analysis of literature sources revealed that previous research still contains several unresolved issues
regarding fractal analysis. These formed the basis for formulating the tasks addressed in this paper, including
classification of methods for calculating fractal dimension as tools for solving practical problems across various
scientific and technological fields; investigation of computational algorithms for determining fractal parameters of
objects concerning their potential for generalization and use in spaces of arbitrary dimensionality; and identification of
interdependencies and interrelations between fractal parameters of quasi-fractal and multifractal computational models
and the technological, technical, and economic characteristics of objects and processes within the automotive industry.
Based on these, ways to develop a practical method for calculating and analyzing fractal objects, characterized
primarily by universality and standardization, have been outlined.

The research carried out in this study regarding the capabilities of the analyzed methods for calculating fractal
dimensions, their classification according to defining characteristics, and the analysis of their algorithmic foundations
led to the conclusion that the Box-Counting Method is the most effective and universal. It enables clear visualization
of geometric complexity in models and their self-organization. The algorithm of this method is relatively simple and
allows quantitative assessment of the hierarchical order and structural chaos level in studied objects, directly
influencing accurate determination of relationships between fractal parameters and technological properties of real
physical phenomena and processes.

A concept for improving the most universal Box-Counting method is proposed, with outlined directions for
extending and deepening its theoretical, methodological, and algorithmic components. The idea of calculating fractal
parameters for object models in spaces of arbitrary dimensions through continuous dimensionality reduction is
introduced. Practically, this procedure resembles gradual stratification of a multidimensional object into separate
layers of varying dimensionality, determining fractal parameters of these layers, and consolidating geometric data into
a unified information framework. Such fractal scanning allows for adjusting individual layers, elements, or nodes
within the model to further improve its technological and technical properties.

Keywords: fractal dimension, technological and performance characteristics of transport objects,
multidimensional space, concept of interrelation between geometric parameters and qualitative properties of transport
infrastructure objects.

INTRODUCTION

Modern scientific research in geometric analysis and modeling of complex systems increasingly
utilizes the concept of fractal dimension. This is due to the inadequacy of traditional Euclidean models for
accurately describing structures characterized by irregular, self-organized, or chaotic patterns. Fractal
characteristics provide a more precise determination of geometric properties for such objects in two- and
three-dimensional spaces, opening broad prospects for optimizing their technological qualities in various
fields of science and engineering [1]. Particularly, in engineering, physics, biology, computer modeling, and
materials science, fractal dimension is employed for analyzing complex surfaces, porous structures, turbulent
flows, transport network quality, and even economic processes.

A significant challenge in solving this diverse range of practical problems is reducing the numerous
research methods and tools for studying fractal properties of specific objects or phenomena to as few as
possible. Therefore, a critical analysis of the most popular methods for calculating fractal dimensions,
identifying their universal characteristics, classifying them, and seeking standardized algorithmic and
software approaches for effective practical application constitute the primary relevant task. Moreover, it is
crucial to consider that, for practical applications, correctly identifying the interrelation between fractal
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parameters and technological properties of the objects studied is even more important than the accuracy of
calculating fractal characteristics themselves.

Additionally, contemporary applied tasks, including those in the field of transportation technologies,
increasingly focus on investigating processes in multidimensional spaces related to the dynamics of chaotic
systems. Finding universal methods and algorithms for calculating fractal parameters of multiparametric
object models within spaces of arbitrary dimensionality, particularly those whose properties may vary over
time, requires further research for generalization. Consequently, analyzing existing methods, improving
them, and adapting them for fractal calculation of multidimensional objects represents the second relevant
task, holding significant potential for applications in automotive transport and logistics.

LITERATURE REVIEW AND PROBLEM STATEMENT

The search and analysis of literature sources regarding the aforementioned issues were conducted in
the following directions: contemporary methods for calculating the fractal dimension of objects in two-
dimensional and higher-dimensional spaces; approaches for evaluating geometric properties of internal, non-
visible areas of spatial fractal structures; and interrelations and mutual influences of fractal parameters of
investigated objects on the enhancement of their technological characteristics.

The study [2] investigates the efficiency of the perimeter-area method, introduced by Mandelbrot, for
determining the fractal dimension of complex geometric objects such as aggregate clusters. The publication
emphasizes the importance of correctly choosing internal and characteristic measurements when applying
this method, particularly for cluster-type objects. However, while highlighting caution in applying the
perimeter-area method to various object types, the work does not provide detailed recommendations for its
use with other complex structures.

Multifractal objects are the subject of study in [3], where the authors explore two mass-oriented
methods for calculating generalized fractal dimension, particularly for a one-dimensional generalized Cantor
set. They demonstrate these methods provide more accurate results compared to the box-counting method.
Although mass-oriented methods exhibited superior results in a specific case, the authors acknowledge the
necessity for further research to determine their limitations and applicability to other types of fractal
structures.

Work [4] presents a fractal dimension calculation method based on the box-counting approach,
incorporating mathematical definitions for cell dimensions and intervals. The authors generate fractal objects
and define cells according to mathematical principles, reducing errors associated with traditional approaches.
Despite improved accuracy, further research is necessary to evaluate its effectiveness for complex natural
objects and under noisy conditions.

Publication [5] investigates the use of correlation dimension estimation in simulated phase spaces to
identify characteristic relations in various dynamic systems. The method is presented as a rapid and reliable
tool for detecting causal interactions in systems dominated by deterministic dynamic processes. However,
the method requires further validation with real data and under conditions where stochastic processes
significantly influence system dynamics.

Study [6] focuses on examining the geometry of rain- and cloud-formed areas identified using satellite
and radar data. The author employs area-perimeter relationships to analyze the fractal form of these regions,
enhancing understanding of their properties and behavior. Although the research allows extracting geometric
information of cloud and rain areas, it does not correlate these findings with parameters influencing climate
models and forecasts.

The authors in [7] propose a three-dimensional box-counting method for analyzing fractal
characteristics of modern urban structures. They applied this method to assess the two-dimensional and
three-dimensional fractal properties of urban matrices, aiding in understanding the complexity and hierarchy
of urban environments. The research investigated the impact of fractal dimension on urban infrastructure
development, including transportation networks, and its potential use in sustainable urban planning.
However, the effect of varying scales and data resolutions on analysis results was not considered, an aspect
essential for practical applications in urban studies.

In [8], the authors developed a three-dimensional road surface model using the box-counting method
to determine fractal dimensions of random height points on road pavements. This provided new parameters
for assessing pavement conditions and their influence on vehicle dynamics. However, results did not
integrate fractal parameters into practical applications nor linked them with existing road quality evaluation
standards. The impact of different pavement types on analysis results was also not specified.

Publication [9] evaluates the efficiency of minimal coverage in calculating fractal dimensions for river
network schemes on maps. The authors proposed a methodology allowing more precise fractal dimension
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determinations, considering object complexity. However, detailed recommendations for automating minimal
coverage, crucial for processing large datasets of river network imagery, were lacking. Additionally,
generalizing results for spatial geometric structures of similar types proved challenging.

The literature analysis indicated several gaps that form the basis for defining the objectives of the
current research. These include a lack of comprehensive approaches in the analyzed studies for using
methods to calculate fractal properties of objects as numerical indicators of their qualitative and safety
attributes; absence of research on calculating fractal characteristics independent of the modeling spaces; and
undeveloped conceptual principles regarding interrelations and impacts of fractal properties on the technical
quality of the analyzed processes.

RESEARCH AIM AND OBJECTIVES

The aim of this research is to develop a concept for effectively utilizing methods of analyzing and
calculating the fractal dimension of models in two-, three-, and multidimensional spaces to solve practical
tasks related to enhancing the qualitative characteristics of automotive transport objects, transport
infrastructure, and logistics. ldentifying the most universal and computationally efficient methods for
calculating fractal parameters will open new opportunities for optimizing modeling processes of real systems
and improving the quality of their analysis and forecasting.

To achieve this aim, the following objectives must be addressed:

1. Classify methods for calculating fractal dimension as tools for solving practical tasks in various
fields of science and technology.

2. Investigate computational algorithms for determining fractal parameters of objects, focusing on
their potential for generalization and application in spaces of arbitrary dimensionality.

3. Define the interrelations and mutual influences between fractal parameters of quasi-fractal and
multifractal computer models and the technological, technical, and economic characteristics of automotive
industry objects and processes. On this basis, outline the pathways for developing a practical method for
calculations and analyses of fractal objects, characterized by universality and standardization in spaces of
arbitrary dimensions.

The object of this research comprises methods for determining the fractal dimension of objects in
spaces of arbitrary dimensionality.

The subject of the research is the specifics of applying fractal methods to analyze complex
geometric models and their influence on assessing technological characteristics of studied objects
(particularly automotive industry objects).

RESEARCH RESULTS

1. Classification of Methods for Calculating Fractal Dimension as Tools for Solving Practical
Problems

Based on the analysis of contemporary approaches to calculating fractal dimensions and the defined
research objectives, the methods are classified according to the following criteria: 1) complexity of method
implementation and required computational resources; 2) dimensionality of the space in which fractal
parameters of the object can be calculated using a specific method; 3) universality of the method and
standardization of its calculation algorithms.

Classification based on the complexity of method implementation and computational resources
required for practical use helps ensure optimal method selection depending on available computational
capabilities, the type of input data, and the required accuracy.

Simple methods (Fig. 1) (low computational complexity). These methods are easy to implement and
require minimal computational resources. They are suitable for processing small datasets or quick
(approximate) estimates of fractal dimensions. Such methods primarily include:

— Box-Counting Method. The most widespread method, based on counting occupied and unoccupied
cells after covering the object with grids of different scales. Easy to implement, this method is commonly
used for analyzing the fractality of planar contours, textures, and porous structures, primarily in two-
dimensional spaces.

— Perimeter-Area Method. Used for 2D objects, fractal dimension is evaluated through the perimeter-
to-area ratio. Primarily applied to linear geometric figures, coastlines approximated by polygons, and various
natural biological structures.

— Mass-Radius Method. This method assesses self-similarity in simple objects by analyzing the mass
(number of zero-dimensional points) within circles of a certain radius. It is relatively easy to implement but
requires effective selection of circle centers and result-averaging algorithms.
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Fig. 1. Classification of fractal calculation methods by algorithm complexity

Moderately complex methods (Fig. 1). These methods require more complex algorithms, various
statistical computations, or specific approaches to selecting parameters of studied objects:

— Correlation Dimension Method. Used to analyze interactions between fractal points through
statistical correlations. The method involves calculating distances between large sets of points, complicating
computations in large-scale systems. It can be used for chaotic system analysis, fluid dynamics, and
clustering data in fractal models.

— Dubuc-Lévy Method. Determines local dimensions of objects by calculating scale variations for
different regions. It is specialized and can be used for fractals with heterogeneous structures.

— Fourier Transform Method. Based on spectral analysis to estimate fractal properties. Requires
continuous frequency data transformation, increasing complexity. Selectively applicable in physics, image
processing, and fractal turbulent flow analysis.

Complex methods (Fig. 1) (high computational complexity). These methods are the most accurate for
determining fractal dimensions but demand significant computational resources, specialized software, or
machine learning:

— Maximum Likelihood Estimation (MLE Method). This method applies statistical approaches to
estimate fractal structure distribution parameters. Suitable for analyzing biological systems or financial
markets where calculation accuracy is crucial. However, it involves repeated probability distribution
computations and complex optimization algorithms.

— Shannon Entropy Method. Uses entropy concepts to evaluate fractal dimensions, requiring
calculations of multiple multidimensional probability distributions. Typically used only for neural networks
analysis or signals with complex structures.

— Wavelet-Based Fractal Analysis Method. Employs wavelet transforms to analyze scale dependencies
in fractal structures. Applied in medical research, turbulence analysis, and neuroscience. Although providing
high accuracy, it demands extensive calculations and powerful computing hardware.

The classification provided is justified by enabling optimal method selection based on specific
practical fractal analysis tasks, available computational resources, and accuracy requirements. Simple
methods are preferable for quick assessments or limited computational capacities, while complex methods
suit specialized scientific research requiring high precision. Using overly complex methods may lead to
substantial time and resource expenses. Additionally, consideration should be given to the suitability of
methods for discrete or continuous data.

Methods for calculating fractal dimensions should also be classified according to the dimensionality
of the space containing the analyzed object. This criterion holds both theoretical and practical importance, as
different methods vary in efficiency depending on the geometric characteristics of fractals and data
acquisition capabilities for their analysis and comparison.

Methods for Analyzing Objects in One-Dimensional Space (Fig. 2) (Zero-Dimensional and One-
Dimensional):
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— Line-Counting Method. Divides linear structures into intervals. This method evaluates geometric
characteristics of curves, fractal dimensions of coastlines, and curvilinear boundaries of fractals.

— Covering Method. Determines the minimal number of circles required to cover a fractal object.
Frequently used in biology for analyzing vascular structures.

Both methods are straightforward and suitable for analyzing simple experimental data. However, their
main drawbacks are limited applicability and difficulty in generalization.
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Fig. 2. Classification of fractal calculation methods by spatial dimensionality

Methods for Analyzing Objects in Two-Dimensional Space (Fig. 2):

— Box-Counting Method. Popular due to simplicity and capability of calculating dimensions for planar
fractals of any shape. Effective for analyzing two-dimensional textures, cloud images, and topographic map
characteristics.

— Scaling Analysis Method. Identifies self-similarity properties of fractal structures based on scaling
changes in analyzed images. Applicable in geophysics, astronomy, and visualization of X-ray images.

— Correlation Dimension Method. Calculates fractal dimension through statistical analysis of distances
between individual points. Widely used in ecology, engineering tasks, and particle clustering analysis.

Methods for Analyzing Objects in Three-Dimensional Space (Fig. 2) (Volumetric Fractals):

— 3D Box-Counting Method. A generalization of the grid method to three-dimensional spaces.
Efficient for porous media, biological tissue structures, and cosmic object distributions.

— Voxel-Counting Method. Calculates fractal dimensions of objects in 3D models and tomographic
data analysis. Beneficial for medical and materials science fields but requires specialized measurement
equipment.

— Percolation Dimension Method: Differs from counting methods, focusing on analyzing geometric
structures of connected clusters in porous media. Crucial for hydrodynamic research and underground
reservoir analysis, yet requires specialized instrumentation.

Methods for Analyzing Objects in Multidimensional Space (Fig. 2) (>3D):

— Generalization Correlation Dimension Method. Rarely used method, applicable in chaos theory and
dynamic systems analysis. Its effectiveness needs further study. Potentially useful in physical process
research, economic analysis, and neuroscience, though difficult to generalize geometrically.

— Rényi Entropy Method. Utilized in statistics to determine data irregularity levels with complex
parameterizations. Its effective application requires advanced computational resources and multidimensional
optimization equipment.

The classification of methods based on the dimensionality of the space demonstrates how the effective
choice of method significantly affects calculation complexity and computational time. Certain methods
perform well only within defined-dimensional spaces and cannot be geometrically generalized. Nonetheless,
this classification aids in the effective selection of methods tailored to specific practical tasks and

experimental data availability.
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A primary goal of classifying known fractal calculation methods is determining their universality and
standardization for application in engineering research involving various technical objects and processes.
For most practical tasks, the interrelation between calculated fractal characteristics and technological quality
indicators is more critical than the accuracy of fractal dimension calculations. Thus, universality and
standardization criteria are crucial, as specialized methods typically address only specific industry-related
tasks.

Typological analysis of existing fractal calculation methods identified universal and standardized
methods (Fig. 3), applicable across different spatial dimensions (1D, 2D, 3D, N-dimensional) and commonly
accepted in various science and technology fields:

— Box-Counting Method. The most universal method applicable to 1D, 2D, 3D, and N-dimensional
spaces. Commonly used in physics, biology, computer graphics, geophysics, and image processing.
Limitations include difficulty analyzing internal geometric structures and potential errors from incorrect
scale parameter selection.

— Correlation Dimension Method. Applied in dynamic systems, neuroscience, and economics. It relies
on statistical correlations between fractal points and theoretically works in arbitrary-dimensional spaces but
requires specialized algorithms and significant computational resources.

— Mass-Radius Method. Determines fractal dimension based on changes in point quantities depending
on the radius of covering circles or spheres. Applicable in spaces of varying dimensionality but dependent on
optimal sphere center selection and result averaging.

— Rényi Entropy Method. Evaluates the complexity of fractal structures in spaces of arbitrary
dimensions. Requires powerful computing equipment and sophisticated multidimensional optimization
algorithms.
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Fig. 3. Classification of fractal calculation methods by universality and algorithm standardization

Specialized methods limited by dimensionality and application fields (Fig. 3) are effective only in
specific spaces (e.g., solely 2D or 3D) and used exclusively for solving specialized fractal analysis tasks:

— Perimeter-Area Method. Limited to 1D and 2D objects, unsuitable for multidimensional fractal
analysis.

— Voxel-Counting Method. Narrowly specialized for 3D objects (medical, geophysical, tomography).
Cannot be generalized without substantial modifications.

— Wavelet-Based Fractal Analysis Method. Mainly used for signals and images (1D, 2D) and not
generalizable to higher-dimensional spaces, restricted primarily to porous cluster media analysis.

This type of classification makes it possible to clearly distinguish between general methods that
produce the same results regardless of the dimensionality of the space in which the calculations are
performed and to outline the range of areas of their effective use.

2. Analysis of Mathematical Foundations of Popular Computational Algorithms for Calculating
Fractal Parameters of Multifractal and Quasi-fractal Objects
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The conducted typological classification has identified several promising methods for addressing
practical fractal analysis tasks related to automotive objects and processes. However, comparing the
algorithmic complexity of the selected methods is necessary to choose the optimal approach in terms of
universality and computational simplicity of fractal calculations.

Correlation Dimension Method involves utilizing a correlation function of the form:

C(a):%;go(a—‘xi—xj‘), (1)

where ¢ is the Heaviside function, N is the total number of points in the set, and ‘Xi —Xj‘ represents the

Euclidean distance between points.

The correlation dimension calculates how the number of point pairs separated by a distance smaller
than a scale parameter & changes. The more chaotic or ordered the points, the sharper the scale-dependent
growth of this number of pairs. Fractal dimension is determined by:

D= IimM . (2
a—0 |n o
Despite its specific scope of practical applications, the Correlation Dimension Method has significant
drawbacks: it is effective only with zero-dimensional sets (points), sensitive to sample sizes and various
scaling noises, and requires extensive computations.
Perimeter-Area Method algorithmically computes the ratio of the perimeter to the area of specified
objects at different scaling coefficients. Fractal dimension is defined as:

InP
Dx2——, 3
InS ®)

where P represents the perimeter, and S is the area of the object set.

Disadvantages include its limited applicability to two-dimensional linear transport-related objects. The
method becomes complicated when working with curved contours such as urban transport route structures or
determining transport flow optimization based on safety parameters. Additionally, it is highly sensitive to
scaling noises.

Mass Dimension Method evaluates how the quantity of points (mass) within a circle, sphere of radius
a , or cube with side « varies depending on « itself. For fractal structures, a power-law relationship holds:

M(a)d aP. (4)

Thus,

a—0 |na

()

where M () is the number of points within the sphere or cube of size « .

Advantages of this method include ease of implementation and applicability to objects without clearly
defined boundaries (e.g., particle distribution in automotive powder coating or fuel spray efficiency
analysis). However, it cannot be used effectively for analyzing objects with varying fractal scales.

Wavelet Transform Method employs wavelet transformation to decompose signals or images into
components at various scales (frequencies). Fractal dimension is estimated by the energy decay of wavelet
coefficients as scale changes:

E(@) ] a™®, (6)
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1
where E(a)zWZ[\Nayi‘z, E(a) is the average energy of wavelet coefficients at scale «, W, ;
i

represents wavelet coefficients, and N is the total number of points.

Main disadvantages include dependency on the chosen wavelet function (e.g., Daubechies, Haar,
Morlet), limited scale resolution, sensitivity to scaling noise, poor handling of boundary effects, and high
computational complexity.

Minimal Covering Method. This method represents a classical approach to determining the fractal
dimension of objects. It is employed for analyzing chaotic point distributions, linear structures, and
geometric figures in 2D and 3D spaces. The fundamental principle involves covering a fractal object with
minimal-sized elements (such as squares, cubes, etc.). The total number of covering elements, N(«), is

computed using a movable grid, followed by the calculation of its dependence on « . The fractal dimension
is subsequently determined using a power-law relationship:

N(a)Da™®, (7)
InN (@)

D=Ilim
|n(l)
(04

X—>a

(8)

Drawbacks include sensitivity to the chosen minimal coverage scale range, increased computational
complexity, uneven grid coverage, and difficulties applying minimal grids above two dimensions,
significantly complicating the algorithm.

Most algorithmic approaches mentioned primarily focus on calculating fractal geometric
characteristics of self-similar two-dimensional objects. They are ineffective when analyzing multifractal and
guasi-fractal structures, requiring segmentation of binary images and determination of topological and fractal
dimensions of segments or entire models. Extending these methods to three-dimensional objects is
challenging due to difficulties accurately identifying geometric parameters such as distances, perimeters,
areas, and occupied versus unoccupied cells within chaotic fractal structures. Consequently, linking technical
and technological properties of analyzed objects to fractal characteristics of constructed models in practical
applications remains a complex problem.

Special attention should be given to the Box-counting Method, which is similar algorithmically to the
Minimal Covering Method and particularly effective for a wide range of practical tasks. Its essence involves
overlaying a uniform grid composed of cells of a certain size onto a model and counting the number of cells
containing the fractal body of the object. This method is an optimal approach for determining the fractal
dimension of objects in practical problems across various fields. It facilitates the analysis of geometric
characteristics of point sets, linear structures, planar, and spatial figures in two- and three-dimensional
spaces, and can be generalized to spaces of arbitrary dimensions.

The method's two primary disadvantages include, on one hand, the correct selection of the minimal
necessary scale coverage when analyzing fractal characteristics of a specific object and, on the other hand,
the challenges associated with overlaying and visualizing hyper-grids for counting cells occupied by fractals
in multidimensional spaces.

As mentioned above, the main idea is to cover the fractal object with elements of a uniform grid of
required size « . The scale coverage sizes can initially be minimal, aligned directly with the objectives of a
specific practical task. After applying the uniform grid, the total coverage number of elements N(«) in the

image is determined. The dependency N (&) on « is calculated using a power-law relationship:

N(a)l a®, ©)
and the fractal dimension is computed as:

_InN(a)
Ine

D (10)
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Applying the Box-counting method involves discretely covering the studied object’s image with a set
of cells arranged in a grid with a particular scale factor. For effective identification and precise analysis of
geometric characteristics of such fractal models, grid element sizes are optimally chosen relative to the
object and may approach the pixel size for two-dimensional raster images.

Works [10-14] describe developed approaches and methods for effectively applying the Box-counting
method as a universal tool for fractal analysis of technological and safety characteristics of objects across
various contemporary production and technological fields.

For instance, study [10] proposes a method of quantitative fractal diagnostics of diesel engine fuel
injectors (Fig. 4). Experimental studies of fuel spray quality using repaired injectors have established a direct
relationship between the fractal dimension of spray patterns and wear levels of precision pairs in fuel
equipment. The experimental results indicate that the fractal dimension of the spray pattern can effectively
diagnose injector readiness for engine operation or identify the necessity for repairs or replacement.

Fig. 4. Fractal assessment of fuel spray quality in internal combustion engine injectors

Research [11] presents a method of quantitative fractal assessment of powder coating quality,
facilitating effective management of powder charging processes considering different particle dispersions
and moisture levels. Computer implementation of quality evaluation and management processes for powder
paint application was executed (Fig. 5). The studies suggest that significant optimization of tribostatic

powder coating processes is possible in small enterprises within the mechanical engineering or automotive
industries.
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Fig. 5. Fractalanalylsof tribostatic f powder coating

Study [12] investigates the influence of geometric parameters, including fractal ones, of discrete urban
transportation network models on passenger transportation quality and improvement pathways for the
structural components of the transportation network. Methods for identifying route diagrams (Fig. 6-a) were
developed, highlighting essential geometric (fractal) elements of the discrete urban transportation network
model significantly impacting passenger transportation quality. Algorithms and methods for computer
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calculations of fractal characteristics of identified images are presented, facilitating effective adjustments of
the technical and technological properties of urban transport infrastructure.

u EEEEREEERDEEE

a)b)
Fig. 6. Fractal analysis of transportation route network quality and route overlap indicators

Research [13] addresses urban passenger transportation features and the impact of fractal
characteristics of transport systems on evaluating route overlap indicators (Fig. 6-b). A fractal method was
proposed to assess route overlap in specific zones and optimize transport vehicle operation on routes during
various daily periods. Research outcomes facilitated effective route modifications, timely adjustments to
carriers' schedules, normative execution times for trips, driver labor organization systems, and combined
operational modes for urban passenger transport.

However, applying the universal Box-counting method becomes problematic when analyzing fractal
models in three-dimensional or especially multidimensional spaces due to the absence of computational tools
for calculating geometric characteristics of specific internal regions and the model overall.

Study [14] developed an innovative method for stacking box-shaped cargo in automotive transport,
significantly reducing cargo unit blocking costs by designing specialized loading schemes. The study
employed fractal mathematics to assess the quality of blocking cargo with hazardous materials, considerably
lowering securing costs and optimizing safety criteria for hazardous materials transportation. The primary
issue was identifying internal geometric characteristics of the fractal model (Fig. 7), raising questions about
linking fractality across individual layers and determining each layer's influence on technological and safety
characteristics of the stacked cargo.

Fig. 7. Three-dimensional model for stacking box-shaped cargo on freight vehicles

Authors addressed this specific problem by developing a methodology for evaluating and comparing
fractal parameters of separate object projections (Fig. 8). However, this approach may not be efficient or
applicable for similar tasks involving the determination of fractal characteristics in multidimensional object
models across other technical fields.
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Fig. 8. Methodology for fractal quality assessment of cargo stacking based on separate projections

3. Relationship Between Fractal Parameters of Quasi-Fractal and Multifractal Computer
Models and Technological, Technical, and Economic Characteristics of Automotive Industry Objects
and Processes

The authors' experience in developing fractal analysis methods for various technical problems has
allowed establishing relationships between fractal geometric characteristics and technological qualities of
objects and processes in the automotive industry, urban transport networks, logistics operations,
infrastructure optimization, transport flow efficiency, and road safety.

Fractal dimension indicators of urban and intercity roads determine their branching degree and spatial
occupancy. Networks with low fractal dimensions (D < 1.5) are characterized by simple, linear structures
with limited routes and low throughput. Networks with high fractal dimensions (D > 1.7) have more complex
interconnections, a greater number of alternative routes, and enhanced transport accessibility. Thus, applying
fractal dimension calculation methods in urban road modeling can assess how effectively the future network
will adapt to the urban environment, identify bottlenecks, and predict congestion levels. Road network
optimization based on fractal characteristics can reduce average travel time and vehicle energy consumption.

Correct calculation methods for fractal parameters of road surfaces allow determining their roughness,
directly influencing tire-road adhesion and driving safety. Road surfaces with excessively low fractal
dimensions (D < 2.3) result in poor tire-road adhesion, particularly on wet and snowy roads. Conversely,
surfaces with excessively high fractal dimensions (D > 2.6) lead to rapid tire wear and increased vehicle
energy consumption. Such fractal analysis facilitates determining the optimal road texture for maximum
safety and minimal vehicle wear.

Urban traffic flows also exhibit fractal structures, formed through complex interactions between
vehicles, traffic lights, and road infrastructure. A low fractal dimension of traffic flow (D < 1.2) indicates
regular traffic, low transport density, and minimal congestion influence. Conversely, excessively high
fractality (D > 1.5) reflects chaotic traffic conditions, significant variability in flow density, potentially
causing accidents and congestion. Fractal analysis thus provides a numerical measure for predicting traffic
intensity and adaptive traffic light adjustments to mitigate congestion.

Fractal analysis methods can effectively optimize urban development parameters and automotive
transport network accessibility. Fractality serves as a qualitative measure of how efficiently urban structures
organize roads, residential areas, and transport hubs. Compact cities with fractal dimensions around D = 1.5
offer improved transport accessibility and reduce average travel distances. In contrast, highly branched cities
with high fractal dimensions (D > 1.8) feature complex transport structures and longer travel times. Such
calculations allow for optimal forecasting of the impact urban planning changes have on transportation
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efficiency.

Correctly calculated fractal parameters can be effectively utilized in logistics for managing urban
goods distribution. Routes with low fractal dimensions (D < 1.3) display centralized patterns, vulnerable to
congestion. Conversely, high fractality patterns (D > 1.5) offer adaptive structures, improving resilience to
delays and disruptions. Fractal analysis identifies weak points in freight flows and facilitates more flexible
logistics schemes.

Additionally, fractal indicators of warehouse systems influence logistical route efficiency, directly
impacting goods distribution principles. Warehouses with low fractal dimensions (D < 1.2) have simple
structures but limited adaptability to demand fluctuations. Warehouses with higher fractality (D > 1.4)
provide better flexibility and faster cargo handling. Here, fractal analysis improves inventory management,
minimizing delays and optimizing costs.

Many practical tasks in automotive transportation relate to optimizing safety characteristics. In this
context, fractal calculation methods enable predicting hazardous road sections, improving road junction
designs to reduce accident probabilities, developing adaptive traffic management systems through chaotic
parameter calculations, and reducing network congestion by optimizing transport infrastructure.

DISCUSSION OF RESEARCH RESULTS

The research conducted within this work, particularly regarding the applicability of analyzed methods
for calculating fractal dimensions, their classification according to defining characteristics, and analysis of
their algorithmic foundations, leads to the conclusion that the Box-Counting Method is the most effective
and versatile. This method clearly visualizes the geometric complexity of object models and their self-
organization. Its algorithm is sufficiently simple, enabling quantitative assessment of hierarchical
organization and structural chaos levels of analyzed objects. This directly influences the accurate
determination of interrelations between fractal parameters and technological properties of real physical
phenomena and processes.

If the proposed concept of universality for the Box-Counting Method is accepted, and further
theoretical, methodological, and algorithmic components are expanded and deepened, the primary remaining
challenge is the absence of a visualization principle for the internal structures of studied objects in spaces of
dimensionality greater than two. Reducing the procedure for calculating the fractal dimension of objects,
even in three-dimensional space, to analyzing characteristics of individual projections often fails to yield the
desired results. Therefore, an innovative approach to calculating fractal parameters has been proposed, based
on continuously reducing the dimensionality of the space in which the models are located.

Practically, this procedure resembles progressively layering a multidimensional object into separate
layers of varying dimensionalities, determining the fractal parameters of each layer, and consolidating
geometric data into a unified informational framework. This form of fractal scanning allows for adjustments
to individual layers, elements, or nodes of the model, thereby facilitating further enhancement of its
technological and technical characteristics.

Initial computational experiments have produced promising results, demonstrating broad potential for
generalization of this methodology to spaces of arbitrary dimensionality.

CONCLUSIONS

1. All research objectives aimed at achieving the goal of this study have been fulfilled. A typological
classification of fractal dimension calculation methods was conducted, positioning them as instrumental tools
for addressing practical tasks across various scientific and technical fields. This classification outlined
critical geometric criteria for the optimal selection of universal methods when solving design tasks within
automotive and transportation technologies.

2. Computational algorithms for determining fractal parameters of objects were studied, particularly
concerning their generalization potential and applicability to spaces of arbitrary dimensions. The strengths
and limitations of these methods were identified, and ideas for developing an innovative fractal parameter
calculation method based on the dimensionality reduction paradigm were proposed.

3. Key elements reflecting the interrelation and mutual influence between fractal parameters of quasi-
fractal and multifractal computer models and technological, technical, and economic characteristics of
automotive objects and processes were identified. The impact of each studied parameter on improving
transport object design processes was analyzed.
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Hycmiwonvea C.I., Camuyk B.IL., I'onosauyx LIL, Ilpucmyna O.B., Jlenux A.P. Ananiz MeToniB
PO3paxyHKy (pPaKTaJbHOI PO3MIPHOCTI SIK IHCTPYMEHTY YAOCKOHAJIEHHSI eKCIUTyaTaliiHUX Ta
0e3MeKOBUX XaPAKTEPUCTUK 00’ €KTIB ABTOMOOIJILHOIO TPAHCIIOPTY

PoGota mpucestueHa po3poOIli KOHIENIii e)eKTUBHOTO BHKOPUCTAHHS METOJIB aHANI3y Ta PO3PAXyHKY
(dpakTaIbHOI PO3MIPHOCTI MoOJENell y IBO-, TPUBHMIPHOMY Ta 0OaraTOBHMIpPHHX MpPOCTOpax IS BUPILICHHS
MPAaKTHYHUX 3aBJaHb YAOCKOHAIEHHS SKICHUX XapaKTePHUCTHK OO0 €KTIB aBTOMOOUIBLHOTO TPAaHCIOPTY,
TPAHCIOPTHOI iH(PACTPYKTYpH Ta  JIOTICTHKHM. Bu3HaueHO HaWOIMBIN YHIBEpPCATBHHM Ta OOYHCIIIOBAIBEHO
e(eKTUBHUI METO pO3paxyHKy (ppakTaIbHUX MapaMeTpiB, SKUH BiIKpUBA€ HOBI MOKJIMBOCTI AJIST ONTHMIi3allii
MIPOLIECIB MOJICITIOBAHHS PEATbHUX CHCTEM 1 CYTTEBO ITiIBUIYE AKICTh IX aHaJi3y Ta MPOTHO3yBaHHS.

CyuacHi npukiIagHi 3a1a4i, y TOMY YHCII 1 B TalTy3i TPAHCIIOPTHUX TEXHOJOTiH, aKTUBHO PYXalOThCS B OiK
JOCITI/DKEHHSI TIPOLECiB y OaraTOBUMIPHHMX IIPOCTOpax, sKi IOB’S3aHi 13 BHUBYECHHSIM IWHAMIKM TOBEHIHKU
XaoTHYHUX cucTteM. [lomyk yHIBEpCATbHUX METONIB 1 aNrOpUTMIB PO3PAaXyHKY (paKTaIbHUX ITapaMeTpiB
MoJIeneil OaraTonapaMeTpUIHUX 00’ €KTIB Y MPOCTOpaxX MOBUTBHOT PO3MIPHOCTI, SIKi 3MIHIOIOTH CBOT BIACTHBOCTI,
HAINpPUKIaJ B Yaci, BUMAarae J01aTKOBHUX JOCIIDKEHb IS 1X y3aralbHEeHHS.

AHaii3 JiTepaTypHHX JOKepel T0Ka3as, 10 OTPHMaHi Y HUX pe3yNbTaTH BKJIIOYAIOTH PsiJi HEBUPIIICHHUX
3ama4 (pakTaIbHOTO aHalizy. BOHM crTamm OCHOBOIO Ui (OpPMYNIOBaHHS 3aBIaHb POOOTH, cepel AKHX:
KJacu(ikarlist METOIB po3paxyHKy (PpaKkTaIbHOI PO3MIPHOCTI, SIK IHCTPYMEHTY PO3B’sI3aHHS NMPAKTUYHUX 33734 Y
PI3HHX Tramy3sx HAyKd Ta TEXHIKH; IOCTIHKEHHs OOYMCIIOBANGHUX AaITOPHUTMIB MiJpaXyHKY (paKTaibHUX
napaMeTpiB 00 €KTiB, 3 TOUKH 30py MOJMJIMBOCTI iX y3arajgbHEHHS Ta BUKOPUCTAHHS, JUIS POCTOPIB AOBUILHOTO
Yyclia BUMIPiB; BH3HAUEHHS B3a€MOBILIUBY Ta B3a€MO3B’ 3Ky (pakTaIbHUX TapaMmeTpiB KBa3i(h)pakTaabHHUX i
MYyJbTU(QPAKTAIBPHAX KOMII'IOTEPHHX MOJIENed 13 TEXHOJOTIYHMMH, TEXHIYHHUMH Ta CKOHOMIYHMMHU
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XapaKTEePUCTUKAaMHU 00’ €KTIB Ta IMPOIECiB aBTOMOOUILHOI Tranmy3i. Ha 1iii oCHOBI OKpeclieHO NUISXH PO3pOOKH
€(EKTHBHOIO, B CEHCI MPaKTUYHHX pO3PaXyHKIB Ta aHaNi3y (pakTaabHUX O00’€KTiB, METOIY, OCHOBHHMU
XapaKTEPUCTUKAMHU SIKOTO € YHIBEPCAIBbHICTh Ta CTAHIAPTU30BAHICTb.

BukoHani y poOOTi JOCHIKCHHS IIOJ0 MOXKIMBOCTEH BHUKOPHCTaHHS MPOAHATI30BAHUX METO/IB
PO3paxyHKy (pakTaibHOI po3MIpHOCTI, X KiIachU]ikallis 3a BU3HAYAIbHIMH O3HAKaMH, aHaJi3 1X aJropuTMigHOT
OCHOBH, J03BOJIMIN 3pOOUTH BUCHOBOK, III0 HaOiIbII ehekTHBHUM 1 yHiBepcambauM € - Box-Counting Method.
Bin BiakpuBae MOXIIMBOCTI JUIsl MAKCUMAIBLHO 3pO3YMIIOT Bi3yalli3ailii reoMeTprYHOI CKIQIHOCTI MOJETeH Ta iX
camMooprasizauito. AJITOpPUTM METOAY AOCTAaTHbO NMPOCTUH 1 J03BOJISIE KUIBKICHO OLIHUTU PIBEHb l€papXidyHOl
BIIOPSIIKOBAHOCTI Ta XAOTUYHOCTI CTPYKTYPH JOCHIPKYBaHUX OO’ €KTIiB, SIKMM HpPSMO BIUIMBAa€ HA KOPEKTHE
BH3HAYCHHSI B3a€MO3B’S3KIB MK MapaMeTpaMu (PpakTaabHOCTI Ta TEXHOJIOTIYHHUMH BJIACTHBOCTSAMH pPEalbHUX
(hI3MYHMX SBHIIL Ta TPOLIECIB.

3anponoOHOBAaHO KOHIEMI[I0 INOJO YAOCKOHAJIEHHS HaHOIIbII YHIBEPCAIBHOIO METOAY KOpPOOOK,
OKPECIICHO IIUISIXHM PO3LIMPEHHS Ta MOTJINOJICHHS HOTO TEOPETUIHOI, METOIOIOTIYHOI, aTOPHTMIYHOI CKIaJOBHUX.
Bucynyrto igero po3paxyHKy (pakTalbHHX IapaMeTpiB Mojened 00’€KTiB y INpOCTOpax JOBLIBHOTO YHCIa
BUMIpIB IUIIXOM HENEepepBHOIO IOHIDKEHHS PO3MIPHOCTI HPOCTOpPY, B SKOMY BOHM 3HaXoIiThcA. Taka
MPOIIeAypa CX0XKa, B MPAKTUIHOMY CEHCI, 13 TMOCTYIIOBUM pO3IIapyBaHHAM 0araTOBHMIPHOTO 00’ €KTy Ha OKpeMi
mapy 3 Pi3HOK PO3MIPHICTIO, BU3HAUEHHS MapaMeTpiB (ppakTaJIbHOCTI TaKWUX IIAPIB i 3BENECHHS T€OMETPHYHHUX
JaHUX y €AMHY iHpopMauiiiHy ocHOBY. Take cBoepiqHe (pakTajbHE CKaHYBaHHS J03BOJUTH KOPUTYBATH OKpEMi
[IApH, EJIEMEHTH UM BY3JIH MOIENI JUI1 MOJAJbIIOr0 YIAOCKOHAIEHHS i1 TEXHOJOTIYHMX Ta TEXHIYHUX
BJIACTUBOCTEH.

KurouoBi cioBa: ¢paxranpHa po3MIpHICTh, TEXHOJOTIUHI Ta €KCIUTyaTallidHI XapaKTepUCTUKU 00’ €KTiB
TPaHCIOPTYy, OaraTOBUMIpPHUH MPOCTIp, KOHLEMIS B3a€EMO3B 3Ky TE€OMETPUYHMX TMapaMeTpiB Ta SAKICHHUX
BIIACTHBOCTEH 00’ €KTIB TPAHCIIOPTHOI iIHPPACTPYKTYPH.
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